scholarly journals Analysis of fracture mechanism for surrounding rock hole based on water-filled blasting

2020 ◽  
Vol 7 (4) ◽  
pp. 704-713
Author(s):  
Jun Wang ◽  
Jingxuan Yang ◽  
Fengfeng Wu ◽  
Tengfei Hu ◽  
Shams Al Faisal

AbstractThe principles of fracture development during underwater blasting are examined based on explosion and impact dynamics, fluid dynamics, fracture dynamics, and field testing. The research reveals that the fracturing of the surrounding rock during underwater blasting is due to the combined action of shock and stress waves for the initial rock breakage and subsequent water expansion. The fracture development model for the surrounding rock of a drilling hole during underwater blasting is established. The rock fracturing range under the combined action of shock and stress waves is developed, as well as the fracture propagation rules after the wedging of the water medium into the fractures. Finally, the results of deep-hole underwater blasting tests on large rocks confirm the efficient utilization of explosive in the hole to improve the safety conditions. Accordingly, safe and static rock breaking under the detonation of high-effect explosive can be achieved. In addition, super-dynamic loading from the explosions and static loading from the water medium in the hole can be adequately combined for rock breaking.

2021 ◽  
Vol 12 (1) ◽  
pp. 68
Author(s):  
Haoyue Sui ◽  
Tianming Su ◽  
Ruilin Hu ◽  
Ke Yang ◽  
Yaxing Cheng

In order to determine the applicability of liquid CO2 phase-transition fracturing technology in rock mass excavations, the principles of CO2 phase-transition fracturing were analyzed, and field tests of liquid CO2 phase-transition fracturing were performed. An “Unmanned Aerial Vehicle (UAV) camera shooting + Microstructure Image Processing System (MIPS) analyzing” method was used to acquire the rock mass characteristics. Further, the Hilbert–Huang Transform (HHT) energy analysis principle was adopted to analyze the characteristics of fracturing vibration waves. The experimental results showed that during the process of fracturing, there were both dynamic actions of rock breakage due to excitation stress wave impacts, and quasi-static actions of rock breakage caused by gasification expansion wedges. In semi-infinite spaces, rock-breakage zones can mainly be divided into crushing zones, fracture zones, and vibration zones. At the same time, under ideal fracturing effects and large volumes, the fracturing granularity will be in accordance with the fractal laws. For example, the larger the fractal dimensions, the higher the proportion of small fragments, and vice versa. Moreover, the vibration waves of the liquid CO2 phase-transition fracturing have short durations, fast attenuation, and fewer high-frequency components. The dominant frequency band of energy will range between 0 and 20 Hz. The liquid CO2 phase-transition fracturing technology has been observed to overcome the shortcomings of traditional explosive blasting methods and can be applied to a variety of rock types. It is a safe and efficient method for rock-breaking excavations; therefore, the above technology effectively provides a new method for the follow-up of similar engineering practices.


2019 ◽  
Vol 2019 ◽  
pp. 1-21 ◽  
Author(s):  
Cheng Zhu ◽  
Yong Yuan ◽  
Zhongshun Chen ◽  
Zhiheng Liu ◽  
Chaofeng Yuan

The stability control of the rock surrounding recovery roadways guarantees the safety of the extraction of equipment. Roof falling and support crushing are prone to occur in double-key strata (DKS) faces in shallow seams during the extraction of equipment. Therefore, this paper focuses on the stability control of the rock surrounding DKS recovery roadways by combining field observations, theoretical analysis, and numerical simulations. First, pressure relief technology, which can effectively release the accumulated rock pressure in the roof, is introduced according to the periodic weighting characteristics of DKS roofs. A reasonable application scope and the applicable conditions for pressure relief technology are given. Considering the influence of the eroded area on the roof structure, two roof mechanics models of DKS are established. The calculation results show that the yield load of the support in the eroded area is low. A scheme for strengthening the support with individual hydraulic props is proposed, and then, the support design of the recovery roadway is improved based on the time effects of fracture development. The width of the recovery roadway and supporting parameters is redesigned according to engineering experience. Finally, constitutive models of the support and compacted rock mass in the gob are developed with FLAC3D software to simulate the failure characteristics of the surrounding rock during pressure relief and equipment extraction. The surrounding rock control effects of two support designs and three extraction schemes are comprehensively evaluated. The results show that the surrounding rock control effect of Scheme 1, which combines improved support design and the bidirectional extraction of equipment, is the best. Engineering application results show that Scheme 1 realizes the safe extraction of equipment. The research results can provide a reference and experience for use in the stability control of rock surrounding recovery roadways in shallow seams.


2021 ◽  
Vol 15 (2) ◽  
pp. 63-69
Author(s):  
Anatolii Bulat ◽  
Valentyn Osіnnii ◽  
Andrii Dreus ◽  
Nataliia Osіnnia

Purpose is the development of a mathematical model to study and describe thermal processes within the borehole wall in terms of plasma-based rock breaking. Methods. The following has been applied: theoretical analysis in the framework of a theory of brittle thermoelasticity breaking, methods of mathematical modeling, and computational experiment. Findings. Brief information on the results of the development of advanced plasma-based technology for borehole reaming for hard mineral mining has been represented. The results of industrial tests of plasma plant of 150-200 kW·s power with plasma-generating gas in the air for hard rock breaking have been represented. The plant and plasma-based technology of borehole reaming were tested in underground conditions of Kryvbas mines while reaming a perimeter hole to drive a ventilation rise in silicate-magnetite quartzites. A mathematical model has been proposed to analyze heat and mechanical fields in the rock during the plasma-based action on the borehole walls. Numerical studies of the temperature dynamics and thermal stresses within the borehole-surrounding rock layer have been carried out. It has been demonstrated that if low-temperature plasma is used (Т = 3500-4000°С), thermal compressing stresses are induced within the thin rock layer; the stresses may exceed the boundary admissible ones. It has been identified that plasma-based effect on the borehole wall makes it possible to create the conditions for intense rock fracturing and breaking. Originality. Solution of a new problem of thermoelastic state of a borehole wall in terms of plasma action has been obtained. The proposed mathematical model has been formulated in a cylindrical coordinate system and considers convective and radiation heat exchange between a plasma jet and a borehole wall. Practical implications. The obtained results make it possible to assess the rock state depending on the plasma jet parameters. The proposed methods of calculations will help carry out research to evaluate breaking parameters (the required heating time, thickness of the heated layer, and approximate spall dimensions) and develop different methods for the breaking process control.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Gongda Wang ◽  
Yuanyuan Wang ◽  
Xin Yang ◽  
Xin Song

Coalbed methane (CBM) is a source of clean energy and has been recovered in past decades all over the world. Gas dynamic disaster is the primary disaster in outburst coal, and methane drainage plays a key role in eliminating this danger. As an efficient technology, a gas jet is widely used in CBM development and methane drainage. In this work, the full impinging process of coal and rock fracturing by a supersonic gas jet was studied. To understand how jet parameters affect coal and rock fracturing results, an elliptical crushing theoretical model was proposed. In addition, a laboratory experiment was designed to examine the proposed model, and four key parameters affecting the fracturing results were studied. The results show that different from the monotonic variation of theoretical values, there is a turning point in the variation of experimental values under some parameters. Considering the influence of the depth and radius of the erosion pit, the rock-breaking effect is better when the nozzle size is 2.75 Ma. The optimal target distance is 30 mm, and the impact pressure of a gas jet should be continuously increased in order to achieve certain rock-breaking effects under the impact of the jet.


Author(s):  
Zhangtao Zhou ◽  
Zheming Zhu ◽  
XinXing Jin ◽  
Hao Tang

During the process of excavation, blasting can induce cracking inside the surrounding rock. Considering the effects of material properties and loading conditions, a rock blasting excavation model with two successive excavation steps was developed through the use of AUTODYN code. Four kinds of equation of state (EOS), linear, shock, JWL, and compaction were applied to the materials employed in this numerical model. A modified principal stress failure criterion was applied to determining material statuses, and TNT explosive and a relatively homogeneous igneous rock, diorite, were used in this numerical model. By using this numerical model, rock fracturing process during blasting excavation was simulated, and rock fracturing process during two successive excavations is presented.


1978 ◽  
Vol 14 (2) ◽  
pp. 165-168 ◽  
Author(s):  
N. E. Trufakin ◽  
V. D. Belyakov

2011 ◽  
Vol 243-249 ◽  
pp. 2130-2137
Author(s):  
Zhao Long Ge ◽  
Yi Yu Lu ◽  
Ji Ren Tang ◽  
Ke Hu ◽  
Wen Feng Zhang

To explore the relationship among the erosion ability of high-pressure cavitating water jets, hydraulic parameters and rock nature with a series of experiments relating to the efficiency of rock-breaking with cavitating water jets for different porosity of rock under different confining pressures and pump pressures. The results show that the erosion efficiency (erosion mass and erosion depth) of cavitating water jets is fitted a conic curve with pump pressure and confining pressure. It increases with the pump pressure increases while decreases with the confining pressure increases; the length of the bubble cloud decreases with the confining pressure increase and the length increases with the pump pressure increase, which is accorded with cubic curve. The bubble cloud length influences the rock-breaking efficiency by deciding the valid stand-off distance directly. Under the experimental condition, the cavitation happens once the pump pressure reaches 7MPa, and the cavitating water jets can crushing the sandstones which the uniaxial compressive strength is 96MPa. On the other hand, the porosity of rock is another main factor of rock breakage with high pressure cavitating water jets. The higher the porosity of rock is, the easier the rock can be broken.


2014 ◽  
Vol 638-640 ◽  
pp. 798-803
Author(s):  
Yong Tao Zhang

As the excavation of tunnels, there are new channels of the groundwater drainage. The original supply of the circulatory system has been destroyed. The effects of groundwater to rock mass of surrounding rock are aggravated. In this paper, combined with a new highway tunnel project, the model is built according to the design parameters and the site engineering geological conditions of the tunnel. The fluid-structure interaction module of the finite difference software FLAC3D is used for the research on tunnel excavation. The distribution of seepage field, the stability of surrounding rock and rock deformation under saturated conditions during the tunnel excavation have been analyzed. The simulation results have certain guiding meaning on fracture development, the stability design of tunnels in water-rich stratum and the design and construction of anti-drainage.


Sign in / Sign up

Export Citation Format

Share Document