scholarly journals The Mechanical Response of Wet Volcanic Sand to Impact Loading, Effects of Water Content and Initial Compaction

2020 ◽  
Vol 6 (3) ◽  
pp. 358-372
Author(s):  
L. Varley ◽  
M. E. Rutherford ◽  
L. Zhang ◽  
A. Pellegrino

Abstract The effects of water content and initial compaction on the dynamic response of volcanic sand from Mount Etna were investigated by a series of experiments on a long Split Hopkinson Pressure Bar apparatus capable of generating stress pulses of duration exceeding one millisecond. The dynamic stress–strain characteristics were determined until large final compressive strains were achieved. An experimental protocol for the preparation of samples characterised by different initial porosity and moisture content was defined in order to reproduce, in a laboratory environment, granular volcanic aggregates representative of naturally occurring soils in different initial density and water content states. It was found that, for limited amounts of water content, the dynamic response of the investigated volcanic wet sand is more compliant than in dry conditions. Conversely, highly saturated samples exhibit a steep increase in stiffness occurring at strains when the dynamic compressive behaviour becomes dominated by the response of the nearly incompressible water. The presence of water has negligible effect on the mechanical behaviour when the samples are loaded at quasi static strain rates. The grain size distribution and morphology of samples tested in different conditions were evaluated and compared by means of edge detection analysis techniques applied to high contrast images.

2019 ◽  
Vol 54 (5) ◽  
pp. 659-668 ◽  
Author(s):  
K Rahmani ◽  
GH Majzoobi ◽  
A Atrian

Mg–SiC nanocomposite samples were fabricated using split Hopkinson pressure bar for different SiC volume fractions and under different temperature conditions. The microstructures and mechanical properties of the samples including microhardness and stress–strain curves were captured from quasi-static and dynamic tests carried out using Instron and split Hopkinson pressure bar, respectively. Nanocomposites were produced by hot and high-rate compaction method using split Hopkinson pressure bar. Temperature also significantly affects relative density and can lead to 2.5% increase in density. Adding SiC-reinforcing particles to samples increased their Vickers microhardness from 46 VH to 68 VH (45% increase) depending on the compaction temperature. X-ray diffraction analysis showed that by increasing temperature from 25℃ to 450℃, the Mg crystallite size increases from 37 nm to 72 nm and decreases the lattice strain from 45% to 30%. In quasi-static tests, the ultimate compressive strength for the compaction temperature of 450℃ was improved from 123% for Mg–0 vol.% SiC to 200% for the Mg–10 vol.% SiC samples compared with those of the compaction at room temperature. In dynamic tests, the ultimate strength for Mg–10 vol.% SiC sample compacted at high strain rate increased remarkably by 110% compared with that for Mg–0 vol.% SiC sample compacted at low strain rate.


2018 ◽  
Vol 18 (04) ◽  
pp. 1850046
Author(s):  
MANAF KARKAR ◽  
CHRISTOPHE MARECHAL ◽  
REMI DELILLE ◽  
GREGORY HAUGOU ◽  
FRANCOIS BRESSON ◽  
...  

Modeling the mechanical behavior of bone is very complex due to substantial variability of the mechanical response of bone. The objective of this study is to investigate the link between morphology of the human parietal bone and its mechanical behavior in compression with two different strain rates. Five formalin-preserved human skulls were used, and 10 specimens were taken from the parietal bone of each subject. The internal geometry of the osseous material was studied with a micro-tomography device. For mechanical testing, quasi-static (0.02 s–1) tests on a conventional compression machine and dynamic tests (1500 s–1) on a split Hopkinson pressure bar (SHPB) were conducted on 9 mm diameter samples. The results were used to examine relationships between the morphological parameters to find morphological correlations. Linkages between mechanical behavior and morphology of the human parietal bone were also analyzed to develop a behavior model based on micro-structure parameters as determined by micro-scanning.


2006 ◽  
Vol 326-328 ◽  
pp. 1573-1576
Author(s):  
Dong Feng Cao ◽  
Li Sheng Liu ◽  
Jiang Tao Zhang

Dynamic response and fracture of high strength boride/alumina ceramic composite were investigated by split Hopkinson pressure bar (SHPB) experiment in this paper. The compressive stress–strain curves and dynamic compression strength of the composites were tested. The surface’s microstructure of fractured composites were examined by using scanning electron microscope (SEM) to investigate the fracture mechanism. The results show that boride/alumina has high dynamic compressive strength and high Young’s modulus. The main fracture mode of the material is the fracture of the ceramic grains. The micro-voids and flaws, generated during the sintering and manufacturing of material and mechanical process of specimen, decrease the strength of the material because they provide the source of crack expansion when the material undergoes the dynamic loadings.


2021 ◽  
Vol 250 ◽  
pp. 02016
Author(s):  
Borja Erice ◽  
Maria Lißner ◽  
Jan Wittig ◽  
Andreas Hornig ◽  
Maik Gude ◽  
...  

A mode II mechanical characterisation of the adhesive joints is performed testing shear lap joint specimens in a Split Hopkinson Tensile Bar (SHTB), equipped with a temperature chamber. The experimentallyobtained traction-separation curves were used to develop a Cohesive Zone Model (CZM) capable of representing the strain-rate and temperaturedependent mechanical response of the adhesive joints. To validate the model, End Notch Flexure (ENF) multi-material specimens made from titanium and carbon fibre reinforced polymer composite laminates were tested at different temperatures using a Split Hopkinson Pressure Bar setup with an in-house made temperature chamber. The finite element (FE) simulations of such tests employing the developed CZM showed the model’s ability to accurately predict the adhesive joints’ failure as well as to understand the failure sequence of multi-material adhesive joint combinations.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4614 ◽  
Author(s):  
Amine Bendarma ◽  
Tomasz Jankowiak ◽  
Alexis Rusinek ◽  
Tomasz Lodygowski ◽  
Bin Jia ◽  
...  

In this paper, experimental and numerical results of an aluminum alloy’s mechanical behavior are discussed. Over a wide range of strain rates (10−4 s−1 ≤ έ ≤ 103 s−1) the influence of the loading impact, velocity and temperature on the dynamic response of the material was analyzed. The interface friction effect on the material’s dynamic response is examined using a split Hopkinson pressure bar (SHPB) in a high temperature experiment using finite element analysis (FEA). The effect of different friction conditions between the specimen and the transmitted/incident bars in the SHPB system was examined using cylinder bulk specimens and cylinder plates defined with four-layer configurations. The results of these tests alongside the presented numerical simulations allow a better understanding of the phenomenon and reduces (minimizes) errors during compression tests at high and low strain rates with temperatures ranging from 21 to 300 °C.


2018 ◽  
Vol 183 ◽  
pp. 03019
Author(s):  
Remigiusz Bloniarz ◽  
Janusz Majta ◽  
Carl P. Trujillo ◽  
Ellen K. Cerreta

As the number of available, advanced high-strength metallic materials possibilities increases due to advancements in processing (for example advanced thermomechanical processing - ATP or severe plastic deformation - SPD), experimental comparisons alone are not sufficient for determination of the most ideal microstructures for specific applications. Our study deals with the dynamic behaviour of high strength steels and in particular with ultrafine-grained (UFG) microalloyed ferrite and austenite. The forming processes of modern UFG materials require rheological models describing the materials behaviour at large strains and strain rates up to over 1000 s-1. In our case, the mechanical response of UFG steels (produced using MaxStrain system) was investigated with split Hopkinson pressure bar (SHPB) tests, performed at room temperature. The dynamic work-hardening behaviour as a function of solute atoms and fine-scale, secondphase particles in the nano-structures of microalloyed ferrite and austenite has been compared to the mechanical response of these materials under quasi-static loading conditions.


2017 ◽  
Vol 27 (10) ◽  
pp. 1589-1600 ◽  
Author(s):  
Chenxu Cao ◽  
Zhiwu Zhu ◽  
Tiantian Fu ◽  
Zhijie Liu

The deformation of frozen soil under impact loading is usually accompanied by the evolution of internal defects and microdamage. By taking the strain and strain rates into account, a rate-dependent damage evolution law is proposed in this study, under the assumption of equivalent strain. Subsequently, a damage-modified rate-dependent constitutive model is proposed to describe the dynamic mechanical properties of frozen soil. A split Hopkinson pressure bar is utilized to test the dynamic mechanical response of frozen soil at different temperatures and high strain rates. The experimental results show that frozen soil produces obvious strain rate and temperature effects, and that there is a linear relationship between the peak stress and temperature. The theoretical results of the proposed constitutive model agree well with the experimental results, verifying the applicability of the model.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Miao Yu ◽  
Chenhui Wei ◽  
Leilei Niu

It is of significance to comprehend the effects of rock microstructure on the tensile strength under different loading rates caused by mining disturbance. So, in this paper, three kinds of sandstones drilled from surrounding rocks in Xiao Jihan Coal to simulate the in situ stress state, whose average grain size is 30 μm (fine grain, FG), 105 μm (medium grain, MG), and 231 μm (Coarse grain, CG), are selected with the calculation of optical microscopic technique and moreover processed to Brazilian disc (BD) to study the mechanical response of samples. The dynamic Brazilian tests of samples with three kinds of grain sizes are conducted with the Split Hopkinson Pressure Bar (SHPB) driven by pendulum hammer, which can produce four different velocities (V=2.0 m/s, 2.5 m/s, 3.3 m/s, and 4.2 m/s) when the incident bar is impacted by pendulum hammer. The incident wave produced by pendulum hammer is a slowly rising stress wave, which allows gradual stress accumulation in the specimen and maintains the load at both ends of the specimen in an equilibrium state. The results show that the dynamic strength of three kinds of BD samples represented loading rates dependence, and FG sandstones are more sensitive for loading rates than MG and CG samples. Moreover, the peak strength is observed to increase linearly with an increasing stress rates, and the relationship between the dynamic BD strength and stress rates can be built through a linear equation. Finally, the failure modes of different grain sizes are discussed and explained by microfailure mechanism.


Sign in / Sign up

Export Citation Format

Share Document