scholarly journals Virulence of Rhynchosporium commune isolates collected in Iceland

Author(s):  
Fluturë Novakazi ◽  
Magnus Göransson ◽  
Tryggvi Sturla Stefánsson ◽  
Marja Jalli ◽  
Jón Hallsteinn Hallsson

AbstractVarious fungal species continue to be one of the most difficult challenges faced by farmers, and hence societies in whole, when it comes to securing plentiful and wholesome food for a rapidly growing human population. Understanding the biology of pathogenic fungi in detail, both at the population and molecular levels, combined with continued emphasis on resistance breeding of important crops, offers the most obvious sustainable solution to this pressing problem. Here we present results of virulence testing and microsatellite analysis on a collection of Icelandic Rynchosporium commune isolates to test whether the previously demonstrated genetic diversity observed translated into functional diversity in the virulence of these isolates. Our results show considerable diversity in the virulence of the Icelandic R. commune samples with each isolate having a unique virulence spectrum on the 15 near-isogenic barley lines used for screening. Our findings have practical implications, showing that even with short continuous barley cultivation and isolation by geographical distance, breeding for Icelandic, and likely other remote or isolated locations, still needs to consider the importance of disease resistance in breeding decisions and variation in local pathotypes. Moreover, our analysis is the first step to focused breeding for disease resistance for Icelandic conditions, an important step in the ongoing Icelandic barley breeding project.

2014 ◽  
Vol 14 (2) ◽  
Author(s):  
R. Soelistijono

This study examines the effectiveness of mycorrhizal Rhizoctonia resistance induction in Phalaenopsis amabilis against Fusarium sp. Fusarium solani is known as pathogens that attack many orchids P. amabilis (Chung et al., 2011) compared to other pathogenic fungi. Attack of Fusarium sp. will cause rot and yellow colored leaves. Until now there has been known as a biological control orchid against Fusarium sp. In this study tested the endurance locations in Sleman and Surakarta to see the effectiveness of a good orchid growth induced by Rhizoctonia mycorrhizal or not to attack by Fusarium sp. The results of the study showed that mycorrhizal Rhizoctonia able to inhibit the attack of Fusarium sp. It is shown by the value of the index of disease resistance  (DSI) in P. amabilis orchid mycorrhizal Rhizoctonia induced lower than that not induced. Mycorrhizal Rhizoctonia induction results in Sleman provide a more real than mycorrhizal Rhizoctonia induction in Surakarta.


2012 ◽  
Vol 36 (12) ◽  
pp. 1819
Author(s):  
Shuwen JIA ◽  
Ping LIU ◽  
Jian LI ◽  
Jitao LI ◽  
Baoquan GAO ◽  
...  

2013 ◽  
Vol 37 (1) ◽  
pp. 26 ◽  
Author(s):  
Yanhong YAO ◽  
Lingfu KONG ◽  
Dengqiang WANG ◽  
Wenhui HE ◽  
Li HE ◽  
...  

2012 ◽  
Vol 35 (7) ◽  
pp. 977-984 ◽  
Author(s):  
Miao-an SHU ◽  
Yu-fang ZHOU ◽  
Xiao-yu ZHU ◽  
Xiao-feng ZHAO ◽  
Xiao-ling GUO

2021 ◽  
Vol 7 (3) ◽  
pp. 202
Author(s):  
Johannes Delgado-Ospina ◽  
Junior Bernardo Molina-Hernández ◽  
Clemencia Chaves-López ◽  
Gianfranco Romanazzi ◽  
Antonello Paparella

Background: The role of fungi in cocoa crops is mainly associated with plant diseases and contamination of harvest with unwanted metabolites such as mycotoxins that can reach the final consumer. However, in recent years there has been interest in discovering other existing interactions in the environment that may be beneficial, such as antagonism, commensalism, and the production of specific enzymes, among others. Scope and approach: This review summarizes the different fungi species involved in cocoa production and the cocoa supply chain. In particular, it examines the presence of fungal species during cultivation, harvest, fermentation, drying, and storage, emphasizing the factors that possibly influence their prevalence in the different stages of production and the health risks associated with the production of mycotoxins in the light of recent literature. Key findings and conclusion: Fungi associated with the cocoa production chain have many different roles. They have evolved in a varied range of ecosystems in close association with plants and various habitats, affecting nearly all the cocoa chain steps. Reports of the isolation of 60 genera of fungi were found, of which only 19 were involved in several stages. Although endophytic fungi can help control some diseases caused by pathogenic fungi, climate change, with increased rain and temperatures, together with intensified exchanges, can favour most of these fungal infections, and the presence of highly aggressive new fungal genotypes increasing the concern of mycotoxin production. For this reason, mitigation strategies need to be determined to prevent the spread of disease-causing fungi and preserve beneficial ones.


Genes ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 901 ◽  
Author(s):  
Asiya Gusa ◽  
Sue Jinks-Robertson

Genome rearrangements and ploidy alterations are important for adaptive change in the pathogenic fungal species Candida and Cryptococcus, which propagate primarily through clonal, asexual reproduction. These changes can occur during mitotic growth and lead to enhanced virulence, drug resistance, and persistence in chronic infections. Examples of microevolution during the course of infection were described in both human infections and mouse models. Recent discoveries defining the role of sexual, parasexual, and unisexual cycles in the evolution of these pathogenic fungi further expanded our understanding of the diversity found in and between species. During mitotic growth, damage to DNA in the form of double-strand breaks (DSBs) is repaired, and genome integrity is restored by the homologous recombination and non-homologous end-joining pathways. In addition to faithful repair, these pathways can introduce minor sequence alterations at the break site or lead to more extensive genetic alterations that include loss of heterozygosity, inversions, duplications, deletions, and translocations. In particular, the prevalence of repetitive sequences in fungal genomes provides opportunities for structural rearrangements to be generated by non-allelic (ectopic) recombination. In this review, we describe DSB repair mechanisms and the types of resulting genome alterations that were documented in the model yeast Saccharomyces cerevisiae. The relevance of similar recombination events to stress- and drug-related adaptations and in generating species diversity are discussed for the human fungal pathogens Candida albicans and Cryptococcus neoformans.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 291
Author(s):  
Biao Ni ◽  
Jian You ◽  
Jiangnan Li ◽  
Yingda Du ◽  
Wei Zhao ◽  
...  

Ecological adaptation plays an important role in the process of plant expansion, and genetics and epigenetics are important in the process of plant adaptation. In this study, genetic and epigenetic analyses and soil properties were performed on D. angustifolia of 17 populations, which were selected in the tundra zone on the western slope of the Changbai Mountains. Our results showed that the levels of genetic and epigenetic diversity of D. angustifolia were relatively low, and the main variation occurred among different populations (amplified fragment length polymorphism (AFLP): 95%, methylation sensitive amplification polymorphism (MSAP): 87%). In addition, DNA methylation levels varied from 23.36% to 35.70%. Principal component analysis (PCA) results showed that soil properties of different populations were heterogeneous. Correlation analyses showed that soil moisture, pH and total nitrogen were significantly correlated with genetic diversity of D. angustifolia, and soil temperature and pH were closely related to epigenetic diversity. Simple Mantel tests and partial Mantel tests showed that genetic variation significantly correlated with habitat or geographical distance. However, the correlation between epigenetic variation and habitat or geographical distance was not significant. Our results showed that, in the case of low genetic variation and genetic diversity, epigenetic variation and DNA methylation may provide a basis for the adaptation of D. angustifolia.


2020 ◽  
Vol 21 (22) ◽  
pp. 8681
Author(s):  
Nicolò Orsoni ◽  
Francesca Degola ◽  
Luca Nerva ◽  
Franco Bisceglie ◽  
Giorgio Spadola ◽  
...  

As key players in biotic stress response of plants, jasmonic acid (JA) and its derivatives cover a specific and prominent role in pathogens-mediated signaling and hence are promising candidates for a sustainable management of phytopathogenic fungi. Recently, JA directed antimicrobial effects on plant pathogens has been suggested, supporting the theory of oxylipins as double gamers in plant-pathogen interaction. Based on these premises, six derivatives (dihydrojasmone and cis-jasmone, two thiosemicarbazonic derivatives and their corresponding complexes with copper) have been evaluated against 13 fungal species affecting various economically important herbaceous and woody crops, such as cereals, grapes and horticultural crops: Phaeoacremonium minimum, Neofusicoccum parvum, Phaeomoniella chlamydospora, Fomitiporia mediterranea, Fusarium poae, F. culmorum, F. graminearum, F. oxysporum f. sp. lactucae,F. sporotrichioides, Aspergillus flavus, Rhizoctonia solani,Sclerotinia spp. and Verticillium dahliae. The biological activity of these compounds was assessed in terms of growth inhibition and, for the two mycotoxigenic species A. flavus and F. sporotrichioides, also in terms of toxin containment. As expected, the inhibitory effect of molecules greatly varied amongst both genera and species; cis-jasmone thiosemicarbazone in particular has shown the wider range of effectiveness. However, our results show that thiosemicarbazones derivatives are more effective than the parent ketones in limiting fungal growth and mycotoxins production, supporting possible applications for the control of pathogenic fungi.


Sign in / Sign up

Export Citation Format

Share Document