scholarly journals The Role of Fungi in the Cocoa Production Chain and the Challenge of Climate Change

2021 ◽  
Vol 7 (3) ◽  
pp. 202
Author(s):  
Johannes Delgado-Ospina ◽  
Junior Bernardo Molina-Hernández ◽  
Clemencia Chaves-López ◽  
Gianfranco Romanazzi ◽  
Antonello Paparella

Background: The role of fungi in cocoa crops is mainly associated with plant diseases and contamination of harvest with unwanted metabolites such as mycotoxins that can reach the final consumer. However, in recent years there has been interest in discovering other existing interactions in the environment that may be beneficial, such as antagonism, commensalism, and the production of specific enzymes, among others. Scope and approach: This review summarizes the different fungi species involved in cocoa production and the cocoa supply chain. In particular, it examines the presence of fungal species during cultivation, harvest, fermentation, drying, and storage, emphasizing the factors that possibly influence their prevalence in the different stages of production and the health risks associated with the production of mycotoxins in the light of recent literature. Key findings and conclusion: Fungi associated with the cocoa production chain have many different roles. They have evolved in a varied range of ecosystems in close association with plants and various habitats, affecting nearly all the cocoa chain steps. Reports of the isolation of 60 genera of fungi were found, of which only 19 were involved in several stages. Although endophytic fungi can help control some diseases caused by pathogenic fungi, climate change, with increased rain and temperatures, together with intensified exchanges, can favour most of these fungal infections, and the presence of highly aggressive new fungal genotypes increasing the concern of mycotoxin production. For this reason, mitigation strategies need to be determined to prevent the spread of disease-causing fungi and preserve beneficial ones.

OENO One ◽  
2013 ◽  
Vol 47 (2) ◽  
pp. 73 ◽  
Author(s):  
Pablo García Benavides ◽  
Pedro Martin Zamorano ◽  
Carlos Alvar Ocete ◽  
Lara Maistrello ◽  
Rafael Ocete

<p style="text-align: justify;"><strong>Aim</strong>: Grapevine decline caused by wood fungi seriously threatens viticulture worldwide. In Spain, the polyphagous borer <em>Xylotrechus</em> <em>arvicola</em> (Coleoptera, Cerambycidae) is becoming a serious pest in different Qualified Designation of Origin (DOC) wine regions. The aim of the present work was to identify the fungal species growing in the galleries excavated by <em>X. arvicola</em> larvae inside the vine branches and investigate the possible relationship between wood pathogenic fungi and this borer.</p><p style="text-align: justify;"><strong>Methods and results</strong>: Wood samples from branches of Tempranillo vines and <em>Prunus pisardi</em> trees affected by the borer <em>X. arvicola</em> were collected in La Rioja DOC vineyards (Northern Spain) and analyzed for the presence of fungi using both morphological techniques and genetic tools based on Internal Transcribed Spacer 2 (ITS2) sequence. Among the 20 different fungal species/isolates identified, 7 belonged to fungi associated with grapevine decline (esca, Petri disease, and <em>Eutypa</em> dieback), 6 were plant pathogens, 6 were saprophytic and one was entomopathogenic (<em>Beauveria bassiana</em>).</p><p style="text-align: justify;"><strong>Conclusion</strong>: The fact that 65 % of the fungi detected inside <em>X. arvicola</em> galleries belong to species recognized as plant pathogens suggests that this borer, in addition to causing a progressive decay of the branches, could facilitate the transmission of plant diseases, further threatening the vineyards by spreading grapevine decline pathogens.</p><p style="text-align: justify;"><strong>Significance and impact of the study</strong>: The present work represents a first step in recognizing the association between the fungal pathogens associated with grapevine decline and the borer <em>X. arvicola</em>, suggesting a possible role of this insect as a vector in the transmission of these fungi.</p>


2014 ◽  
Vol 17 (3) ◽  
pp. 555-567 ◽  
Author(s):  
M. J. Biegańska

AbstractThe environment of animals is inhabited by enormous fungal species, but only a few hundreds are pathogenic for mammals. Most of potentially pathogenic fungal species, excluding dermatophytes, seldom cause the disease in immunocompetent hosts. Data from literature indicate, that an immune system and endothermy are foundations for this mammalian relative resistance to fungal systemic infections. Stable and high temperature of the body restricts invasion and growth of potentially pathogenic fungi. Together with elevated metabolism it supports the effectiveness of mammalian immunity. The innate immunity is assigned to prevent the invasion of various microbes (including fungi) to the hosts’ organism. It consists of cellular receptors and several humoral factors as the Antimicrobial Peptides. If the physical barriers fail in stopping the invader, it is recognized as “alien” by multiple Pattern Recognition Receptors (PRRs) like Toll Like Receptors (TLRs) expressed by cells of innate immunity and/ or C-type lectins. At the same time innate inflammation begins and the complement cascade is activated. These mechanisms are able to stop and clear some fungal infections. During existing infection the adaptive immunity is induced. This review aims to show the role of mammalian endothermy and to point the most important elements of innate antifungal immunity.


2021 ◽  
Vol 7 (9) ◽  
pp. 720
Author(s):  
Maryam Roudbary ◽  
Sunil Kumar ◽  
Awanish Kumar ◽  
Lucia Černáková ◽  
Fatemeh Nikoomanesh ◽  
...  

Patients with severe COVID-19, such as individuals in intensive care units (ICU), are exceptionally susceptible to bacterial and fungal infections. The most prevalent fungal infections are aspergillosis and candidemia. Nonetheless, other fungal species (for instance, Histoplasma spp., Rhizopus spp., Mucor spp., Cryptococcus spp.) have recently been increasingly linked to opportunistic fungal diseases in COVID-19 patients. These fungal co-infections are described with rising incidence, severe illness, and death that is associated with host immune response. Awareness of the high risks of the occurrence of fungal co-infections is crucial to downgrade any arrear in diagnosis and treatment to support the prevention of severe illness and death directly related to these infections. This review analyses the fungal infections, treatments, outcome, and immune response, considering the possible role of the microbiome in these patients. The search was performed in Medline (PubMed), using the words “fungal infections COVID-19”, between 2020–2021.


1996 ◽  
Vol 9 (1) ◽  
pp. 34-46 ◽  
Author(s):  
T R Kozel

Fungi have been studied as prototype activators of the complement cascade since the early 1900s. More recently, attention has focused on the role of the complement system in the pathogenesis of fungal infections. The interactions of Cryptococcus neoformans and Candida albicans with the complement system are the most widely characterized; however, all pathogenic fungi examined to date have the ability to initiate the complement cascade. The molecular mechanisms for initiation and regulation of the complement cascade differ from one fungus to another, most likely reflecting differences in the structure of the outer layers of the cell wall. The molecular bases for such differences remain to be identified. Studies of mycoses in experimental animals with induced or congenital deficiencies in the complement system demonstrate that complement is an important innate system for control of fungal infection. Contributions to host resistance include opsonization and generation of inflammatory mediators. Inflammation induced by chemotactic products of the complement system may contribute to the pathogenesis of some fungal infections.


2021 ◽  
Vol 7 (10) ◽  
pp. 875
Author(s):  
Manuela Gómez-Gaviria ◽  
Ana P. Vargas-Macías ◽  
Laura C. García-Carnero ◽  
Iván Martínez-Duncker ◽  
Héctor M. Mora-Montes

Protein glycosylation is a highly conserved post-translational modification among organisms. It plays fundamental roles in many biological processes, ranging from protein trafficking and cell adhesion to host–pathogen interactions. According to the amino acid side chain atoms to which glycans are linked, protein glycosylation can be divided into two major categories: N-glycosylation and O-glycosylation. However, there are other types of modifications such as the addition of GPI to the C-terminal end of the protein. Besides the importance of glycoproteins in biological functions, they are a major component of the fungal cell wall and plasma membrane and contribute to pathogenicity, virulence, and recognition by the host immunity. Given that this structure is absent in host mammalian cells, it stands as an attractive target for developing selective compounds for the treatment of fungal infections. This review focuses on describing the relationship between protein glycosylation and the host–immune interaction in medically relevant fungal species.


2021 ◽  
Vol 97 (02) ◽  
pp. 179-190
Author(s):  
Georgina K. Magnus ◽  
Elizabeth Celanowicz ◽  
Mihai Voicu ◽  
Mark Hafer ◽  
Juha M. Metsaranta ◽  
...  

The United Nations Framework Convention on Climate Change (UNFCCC) requires its signatories, including Canada, to estimate and report their annual greenhouse gas (GHG) emissions and removals. Forests are an important natural resource as they slow the accumulation of atmospheric carbon through the process of carbon sequestration. Due to the role of forests as carbon sinks, governments consider afforestation projects as feasible climate change mitigation strategies. This article outlines a spatially-explicit approach to validating afforestation data in Ontario, Canada. Validation is a user-supervised process that uses satellite imagery, remote sensing tools, and other auxiliary data to confirm the presence of seedlings planted through Forests Ontario’s 50 Million Tree program. Of the 12 466 hectares assessed, 83% is identified as afforested, 6% is not afforested and 10% is not determined. The area classified as successful afforestation is used as input for the Generic Carbon Budget Model (GCBM), to simulate afforestation effects on carbon stocks. Our findings show the afforestation activities will create a small carbon sink by 2060. From this project, it is evident that spatial validation of afforestation data is feasible, although the collection of additional standardized auxiliary data is recommended for future afforestation projects, if carbon benefits are to be reported.


2021 ◽  
Vol 7 (9) ◽  
Author(s):  
Darcy A. B. Jones ◽  
Paula M. Moolhuijzen ◽  
James K. Hane

Plant diseases caused by fungal pathogens are typically initiated by molecular interactions between ‘effector’ molecules released by a pathogen and receptor molecules on or within the plant host cell. In many cases these effector-receptor interactions directly determine host resistance or susceptibility. The search for fungal effector proteins is a developing area in fungal-plant pathology, with more than 165 distinct confirmed fungal effector proteins in the public domain. For a small number of these, novel effectors can be rapidly discovered across multiple fungal species through the identification of known effector homologues. However, many have no detectable homology by standard sequence-based search methods. This study employs a novel comparison method (RemEff) that is capable of identifying protein families with greater sensitivity than traditional homology-inference methods, leveraging a growing pool of confirmed fungal effector data to enable the prediction of novel fungal effector candidates by protein family association. Resources relating to the RemEff method and data used in this study are available from https://figshare.com/projects/Effector_protein_remote_homology/87965.


2018 ◽  
Vol 23 (6) ◽  
pp. 520-531 ◽  
Author(s):  
Gopal P. Dahal ◽  
Ronald E. Viola

Pathogenic fungi represent a growing threat to human health, with an increase in the frequency of drug-resistant fungal infections. Identifying targets from among the selected metabolic pathways that are unique to microbial species presents an opportunity to develop new antifungal agents against new and untested targets to combat this growth threat. Aspartate semialdehyde dehydrogenase (ASADH) catalyzes a key step in a uniquely microbial amino acid biosynthetic pathway and is essential for microbial viability. This enzyme, purified from four pathogenic fungal organisms ( Candida albicans, Aspergillus fumigatus, Cryptococcus neoformans, and Blastomyces dermatitidis), has been screened against fragment libraries to identify initial enzyme inhibitors. The binding of structural analogs of the most promising lead compounds was measured against these fungal ASADHs to establish important structure–activity relationships among these different inhibitor classes. The most potent of these inhibitors have been docked into structures of this fungal enzyme target to identify important structural elements that serve as critical binding determinants. Several inhibitors with low micromolar inhibition constants have been identified that showed selectivity against these related enzymes from different fungal species. Subsequent screening against a library of drugs and drug candidates identified some additional inhibitors containing a consistent set of functional groups required for fungal ASADH inhibition. Additional elaboration of these core structures will likely lead to more potent and selective inhibitors.


PLoS ONE ◽  
2018 ◽  
Vol 13 (8) ◽  
pp. e0202009 ◽  
Author(s):  
María Martínez-Jauregui ◽  
María Jesús Serra-Varela ◽  
Mario Díaz ◽  
Mario Soliño

Sign in / Sign up

Export Citation Format

Share Document