Structural morphological and electrical analysis of Pr- And La-doped magnesium ferrites

Author(s):  
Muhammad Zeeshan Khan ◽  
Shah Zaman ◽  
Muhammad Arshad Shehzad Hassan ◽  
Asim Khan
Keyword(s):  
2019 ◽  
Vol 139 (9) ◽  
pp. 323-328
Author(s):  
Sho Ojima ◽  
Shigeru Fujimoto ◽  
Akihiro Morohoshi ◽  
Masaaki Ichiki
Keyword(s):  

2015 ◽  
Vol 30 (2) ◽  
pp. 171 ◽  
Author(s):  
CHEN Tao-Tao ◽  
LI Dan ◽  
JING Wen-Heng ◽  
FAN Yi-Qun ◽  
XING Wei-Hong

Author(s):  
E. Widener ◽  
S. Tatti ◽  
P. Schani ◽  
S. Crown ◽  
B. Dunnigan ◽  
...  

Abstract A new 0.5 um 1 Megabit SRAM which employed a double metal, triple poly CMOS process with Tungsten plug metal to poly /silicon contacts was introduced. During burn-in of this product, high currents, apparently due to electrical overstress, were experienced. Electrical analysis showed abnormal supply current characteristics at high voltages. Failure analysis identified the sites of the high currents of the bum-in rejects and discovered cracks in the glue layer prior to Tungsten deposition as the root cause of the failure. The glue layer cracks allowed a reaction with the poly/silicon, causing opens at the bottom of contacts. These floating nodes caused high currents and often latch-up during burn-in. Designed experiments in the wafer fab identified an improved glue layer process, which has been implemented. The new process shows improvement in burn in performance as well as outgoing product quality.


Author(s):  
Suk Min Kim ◽  
Jung Ho Lee ◽  
Jong Hak Lee ◽  
Hyung Ki Kim ◽  
Myung Sick Chang ◽  
...  

Abstract We report an analysis of a single shared column fail on DRAM technology using a nano-probing technique in this work. The electrical characteristics of the failed transistors show that the column fails were caused by two different failure mechanisms: abnormal contact and implant profiles. We believe that electrical analysis using nano-probing will be a powerful tool for non-visible failure analysis in the future because it is impossible to clearly reveal these two different failure mechanisms solely using physical failure methods.


Author(s):  
B. Domengès ◽  
P. Poirier

Abstract In this study, the resistance of FIB prepared vias was characterized by the Kelvin probe technique and their physical characteristics studied using cross-sectional analysis. Two domains of resistivity were isolated in relation to the ion beam current used for the deposition of the via metal (Pt). Also submicrometer vias were investigated on 4.2 µm deep metal lines of a BiCMOS aluminum based design and a CMOS 090 copper based one. It is shown that the controlling parameter is the shape and volume of the contact, and that the contact formation is favored by the amount of over-mill of the via into the metal line it will contact.


Author(s):  
C.Q. Chen ◽  
G.B. Ang ◽  
Z.X. Xing ◽  
Y.N. Hua ◽  
Z.Q. Mo ◽  
...  

Abstract Several product lots were found to suffer from data retention failures in OTP (one time program) devices. PFA (physical failure analysis) was performed on these devices, but nothing abnormal was observed. Cross-sectional TEM (transmission electron microscopy) revealed no physical defects or abnormal CDs (critical dimensions). In order to isolate the failed layer or location, electrical analysis was conducted. Several electrical simulation experiments, designed to test the data retention properties of OTP devices, were preformed. Meilke's method [1] was also used to differentiate between mobile ion contamination and charge trap centers. Besides Meilke's method, a new electrical analysis method was used to verify the analysis results. The results of our analysis suggests that SiN charge trap centers are the root cause for the data retention failures, and the ratio of Si/N is the key to charge trap center formation. Auger analysis was used to physically check the Si/N ratio of OTP devices. The results support our hypothesis. Subsequent DOE (Design Of Experiment) experiments also confirm our analysis results. Key Words: OTP, data retention, Non-visible defect, AFP, charge trap center, mobile ion.


2018 ◽  
Author(s):  
Liangshan Chen ◽  
Yuting Wei ◽  
Tanya Schaeffer ◽  
Chongkhiam Oh

Abstract The paper reports the investigation on the root cause of source-drain leakage in bulk FinFET devices. While the failing device was readily isolated by nanoprobing technique and the electrical analysis pinpointed the potential defect location inside the Fin channel, the identification of physical root cause went through extreme challenges imposed by the tiny-sized device and the unique FinFET 3D architecture. The initial TEM analysis was misled by the projection of a species in the lamella surface and thus could not explain the electrical data. Careful analysis on the device structure was able to identify the origin of the species and led to the discovery of the actual root cause. This paper will provide the analysis details leading to the findings, and highlight the role of electrical understanding in not only providing guidance for physical analysis but also revealing the true root cause of failure in FinFET devices.


2013 ◽  
Vol 28 (4) ◽  
pp. 436-440 ◽  
Author(s):  
Yi-Jun XIE ◽  
Yi-Ping GUO ◽  
Wen DONG ◽  
Bing GUO ◽  
Hua LI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document