scholarly journals Residual mechanical strength of glass fiber reinforced reactive powder concrete exposed to elevated temperatures

2020 ◽  
Vol 2 (9) ◽  
Author(s):  
Syed Safdar Raza ◽  
Liaqat Ali Qureshi ◽  
Babar Ali
Aerospace ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 28
Author(s):  
Md.Zahid Hasan

Many high-strength composite materials have been developed for aircraft structures. GLAss fiber REinforced aluminum (GLARE) is one of the high-performance composites. The review of articles, however, yielded no study on the impact damage of heated GLARE laminates. This study, therefore, aimed at developing a numerical model that can delineate the continuum damage of GLARE 5A-3/2-0.3 laminates at elevated temperatures. In the first stage, the inter-laminar interface failure of heated GLARE laminate had been investigated at room temperature and 80 °C. The numerical analysis employed a three-dimensional GLARE 5A-3/2-0.3 model that accommodated volumetric cohesive interfaces between mating material layers. Lagrangian smoothed particles populated the projectile. The model considered the degradation of tensile and shear modulus of glass fiber reinforced epoxy (GF/EP) at 80 °C, while incorporated temperature-dependent critical strain energy release rate of cohesive interfaces. When coupled with the material particulars, an 82 m/s bird impact at room temperature exhibited delamination first in the GF/EP 90°/0° interface farthest from the impacted side. Keeping the impact velocity, interface failure propagated at a slower rate at 80 °C than that at room temperature, which was in agreement with the impact damage determined in the experiments. The outcomes of this study will help optimize a GLARE laminate based on the anti-icing temperature of aircraft.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 446
Author(s):  
Jeong-Dae Kim ◽  
Jeong-Hyeon Kim ◽  
Dong-Ha Lee ◽  
Dong-Ju Yeom ◽  
Jae-Myung Lee

Polyisocyanurate foam (PIF) has been adopted as a liquefied natural gas (LNG) insulating material owing to its various mechanical merits such as high structural stability and mechanical strength, and excellent insulating ability. In an attempt to increase the mechanical strength of PIF, chopped-glass-fiber-reinforced polyisocyanurate foam (CGR-PIF) was synthesized by adding chopped glass fibers to polyol and isocyanate, which are the raw materials used in the polymerization process for producing PIF. The main objective is to closely observe the compression material characteristics of PIF and CGR-PIF in terms of the cryogenic temperature. Therefore, compressive tests were conducted at cryogenic temperature including low temperatures, and microscopic images were obtained to analyze the cell size and distribution that affects the mechanical and thermal properties of the foam. Furthermore, recovery ratio and weight loss which are important factors of brittle fracture were evaluated, and the applicability of the foams to a cryogenic environment was evaluated. Finally, thermal conductivity, an important parameter of insulation, was evaluated. The obtained results confirm that the compressive strength of CGR-PIF significantly increases at cryogenic temperatures; moreover, a relatively higher thermal conductivity was observed in the case of CGR-PIF as compared to that of PIF owing to the chopped glass fibers.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Vijay Kumar Dwivedi ◽  
Dipak Kumar

Purpose The purpose of this paper is related with the comparative study between graphene-based glass fiber–reinforced polymer composites and without graphene composite on polymer matrix. The current study explains the result of amalgamation of 4 Wt.% graphene oxide (GO), in comparison to without graphene, on the mechanical strength of glass fiber/epoxy (GE). Design/methodology/approach A hand layup technique is used for the experimental study. For this, chemical synthesis process is approached based on Hummer’s theory. For mechanical testing of glass fiber–reinforced graphene composites and without graphene composites, American Society for Testing and Materials-3039 (ASTM3039) standards was adopted. Furthermore, comparatively, composites were characterized by field emission scanning electron microscopy. Findings Reinforcement of 4.0 Wt.% GO in epoxy matrix material showed 7.46% and 12.31% improvement in mechanical strength and elongation, respectively. Scanning electron microscopy results showed the influence of graphene cumulations in the failure of GO-reinforced GE (GO-GE) composites. Originality/value The inimitable things of graphene grounded nanofillers have encouraged in the world of material for their thinkable manipulation in glass fiber polymeric composites. In this work, for the first time, graphene is used as nanofiller in glass fiber epoxy coatings, and their fractography study is investigated.


2012 ◽  
Vol 43 (5) ◽  
pp. 2265-2271 ◽  
Author(s):  
Saleh Alsayed ◽  
Yousef Al-Salloum ◽  
Tarek Almusallam ◽  
Sherif El-Gamal ◽  
Mohammed Aqel

Addition of glass fibers into concrete significantly modifies its tensile strength. The fibers are placed at desired locations and orientations by the matrix surrounding it, thereby making the fibers as principal load carrying members and also protecting them from environmental damage. Glass fibers provide resistance to high temperature, and the ease of incorporating them into the matrix either in continuous or discontinuous lengths. In this work, carbonation test representing the durability of Glass Fiber Reinforced Concrete (GFRC) was carried out, and then experimental program determines the properties like compressive strength, split tensile strength and flexural strength of GFRC for 7 days and 28 days of curing, with percentage of fibers in ratios 0.5%, 1%, 1.5%, 2% and performance of GFRC at elevated temperatures of 300°c, 500°c, 700°c, 1000°c are compared with conventional concrete. The results depict that, the residual compressive strength capacity of GFRC is greater than unreinforced concrete both at elevated and normal temperatures.


Sign in / Sign up

Export Citation Format

Share Document