scholarly journals Simulation of air temperature and their influence on the potential distribution of Myracrodruon urundeuva, Copernicia prunifera and Cereus jamacaru in the Caatinga

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Luciana Cristina de Sousa Vieira ◽  
Vicente de Paula Silva Filho ◽  
Prakki Satyamurty ◽  
Vanessa de Almeida Dantas ◽  
Aldeize da Silva Santos ◽  
...  

AbstractAreas in the process of aridification in Caatinga phytogeographic domain in northeastern Brazil increase every year due to human intervention and increase in air temperature. The identification of long-term patterns and air temperature trends in the phytogeographic domain can express climate variability as well as a new phase of adaptation to some plant species. The temperature series from 1951 to 2018 obtained from the National Centers for Environmental Prediction data sets in four conservation areas with native vegetation, located in the North (A1), East (A2), South (A3) and West (A4) regions of this phytogeographic domain, show an increase in temperature between 0.5 and 1.4 °C over the 68-year period with the highest warming occurring in the months of March, April and May. The Maxent model is used to identify the influence of this increase on the presence potential of three species in the Caatinga, Myracrodruon urundeuva (aroeira), Copernicia prunifera (palmeira) and Cereus jamacaru DC (cactus) in the future time interval of 2041 to 2060, considering IPCC projected climate changes. The results show that climate change can lead to a reduction as well as redistribution of the potential areas of occurrence of the three species. Notable changes are: in the case of Carnauba, the high potential area reduces from 25.3% in the present state to 19.6% in 2050, and potential area for Aroeira diminishes in central Bahia and increases in Rio Grande do Norte. The projected changes for all three species are discussed.

2016 ◽  
Vol 37 (1) ◽  
pp. 1-21 ◽  
Author(s):  
Andrzej Araźny ◽  
Rajmund Przybylak ◽  
Marek Kejna

AbstractThis paper provides an overview of the results of research on changes in ground temperature down to 50 cm depth, on the Kaffiøyra Plain, Spitsbergen in the summer seasons. To achieve this, measurement data were analysed from three different ecotopes (CALM Site P2A, P2B and P2C) – a beach, a moraine and tundra – collected during 22 polar expeditions between 1975 and 2014. To ensure comparability, data sets for the common period from 21 July to 31 August (referred to as the “summer season” further in the text) were analysed. The greatest influence on temperature across the investigated ground layers comes from air temperature (correlation coefficients ranging from 0.61 to 0.84). For the purpose of the analysis of the changes in ground temperature in the years 1975–2014, missing data for certain summer seasons were reconstructed on the basis of similar data from a meteorological station at Ny-Ålesund. The ground temperature at the Beach site demonstrated a statistically-significant growing trend: at depths from 1 to 10 cm the temperature increased by 0.27–0.28°C per decade, and from 20 to 50 cm by as much as 0.30°C per decade. On the Kaffiøyra Plain, the North Atlantic Oscillation (NAO) has a greater influence on the ground and air temperature than the Arctic Oscillation (AO).


2020 ◽  
Vol 45 (2) ◽  
pp. 340-348
Author(s):  
James Lucas da Costa-Lima ◽  
Earl Celestino de Oliveira Chagas

Abstract—A synopsis of Dicliptera (Acanthaceae) for Brazil is presented. Six species are recognized: Dicliptera ciliaris, D. sexangularis, and D. squarrosa, widely distributed in South America; D. purpurascens, which ranges from the North Region of Brazil (in the state of Acre) to eastern Bolivia; D. gracilirama, a new species from the Atlantic Forest of northeastern Brazil; and D. granchaquenha, a new species recorded in dry and semideciduous forests in Bolivia and western Brazil, in the state of Mato Grosso do Sul. Furthermore, we propose new synonyms and designate lectotypes for eleven names. An identification key to the six accepted Dicliptera species in Brazil is provided.


Author(s):  
Boško Milovanović ◽  
Sebastian Schubert ◽  
Milan Radovanović ◽  
Vesna Ristić Vakanjac ◽  
Christoph Schneider

Author(s):  
Alexander J.P. Houben ◽  
Geert-Jan Vis

Abstract Knowledge of the stratigraphic development of pre-Carboniferous strata in the subsurface of the Netherlands is very limited, leaving the lithostratigraphic nomenclature for this time interval informal. In two wells from the southwestern Netherlands, Silurian strata have repeatedly been reported, suggesting that these are the oldest ever recovered in the Netherlands. The hypothesised presence of Silurian-aged strata has not been tested by biostratigraphic analysis. A similar lack of biostratigraphic control applies to the overlying Devonian succession. We present the results of a palynological study of core material from wells KTG-01 and S05-01. Relatively low-diversity and poorly preserved miospore associations were recorded. These, nonetheless, provide new insights into the regional stratigraphic development of the pre-Carboniferous of the SW Netherlands. The lower two cores from well KTG-01 are of a late Silurian (Ludlow–Pridoli Epoch) to earliest Devonian (Lochkovian) age, confirming that these are the oldest sedimentary strata ever recovered in the Netherlands. The results from the upper cored section from the pre-Carboniferous succession in well KTG-01 and the cored sections from the pre-Carboniferous succession in well S05-01 are more ambiguous. This inferred Devonian succession is, in the current informal lithostratigraphy of the Netherlands, assigned to the Banjaard group and its subordinate Bollen Claystone formation, of presumed Frasnian (i.e. early Late Devonian) age. Age-indicative Middle to Late Devonian palynomorphs were, however, not recorded, and the overall character of the poorly preserved palynological associations in wells KTG-01 and S05-01 may also suggest an Early Devonian age. In terms of lithofacies, however, the cores in well S05-01 can be correlated to the upper Frasnian – lower Famennian Falisolle Formation in the Campine Basin in Belgium. Hence, it remains plausible that an unconformity separates Silurian to Lower Devonian strata from Upper Devonian (Frasnian–Famennian) strata in the SW Netherlands. In general, the abundance of miospore associations points to the presence of a vegetated hinterland and a relatively proximal yet relatively deep marine setting during late Silurian and Early Devonian times. This differs markedly from the open marine depositional settings reported from the Brabant Massif area to the south in present-day Belgium, suggesting a sediment source to the north. The episodic presence of reworked (marine) acritarchs of Ordovician age suggests the influx of sedimentary material from uplifted elements on the present-day Brabant Massif to the south, possibly in relation to the activation of a Brabant Arch system.


2019 ◽  
Vol 93 (12) ◽  
pp. 2651-2660 ◽  
Author(s):  
Sergey Samsonov

AbstractThe previously presented Multidimensional Small Baseline Subset (MSBAS-2D) technique computes two-dimensional (2D), east and vertical, ground deformation time series from two or more ascending and descending Differential Interferometric Synthetic Aperture Radar (DInSAR) data sets by assuming that the contribution of the north deformation component is negligible. DInSAR data sets can be acquired with different temporal and spatial resolutions, viewing geometries and wavelengths. The MSBAS-2D technique has previously been used for mapping deformation due to mining, urban development, carbon sequestration, permafrost aggradation and pingo growth, and volcanic activities. In the case of glacier ice flow, the north deformation component is often too large to be negligible. Historically, the surface-parallel flow (SPF) constraint was used to compute the static three-dimensional (3D) velocity field at various glaciers. A novel MSBAS-3D technique has been developed for computing 3D deformation time series where the SPF constraint is utilized. This technique is used for mapping 3D deformation at the Barnes Ice Cap, Baffin Island, Nunavut, Canada, during January–March 2015, and the MSBAS-2D and MSBAS-3D solutions are compared. The MSBAS-3D technique can be used for studying glacier ice flow at other glaciers and other surface deformation processes with large north deformation component, such as landslides. The software implementation of MSBAS-3D technique can be downloaded from http://insar.ca/.


2019 ◽  
Vol 32 (19) ◽  
pp. 6467-6490 ◽  
Author(s):  
Kimmo Ruosteenoja ◽  
Timo Vihma ◽  
Ari Venäläinen

Abstract Future changes in geostrophic winds over Europe and the North Atlantic region were studied utilizing output data from 21 CMIP5 global climate models (GCMs). Changes in temporal means, extremes, and the joint distribution of speed and direction were considered. In concordance with previous research, the time mean and extreme scalar wind speeds do not change pronouncedly in response to the projected climate change; some degree of weakening occurs in the majority of the domain. Nevertheless, substantial changes in high wind speeds are identified when studying the geostrophic winds from different directions separately. In particular, in northern Europe in autumn and in parts of northwestern Europe in winter, the frequency of strong westerly winds is projected to increase by up to 50%. Concurrently, easterly winds become less common. In addition, we evaluated the potential of the GCMs to simulate changes in the near-surface true wind speeds. In ocean areas, changes in the true and geostrophic winds are mainly consistent and the emerging differences can be explained (e.g., by the retreat of Arctic sea ice). Conversely, in several GCMs the continental wind speed response proved to be predominantly determined by fairly arbitrary changes in the surface properties rather than by changes in the atmospheric circulation. Accordingly, true wind projections derived directly from the model output should be treated with caution since they do not necessarily reflect the actual atmospheric response to global warming.


2009 ◽  
Vol 19 (1) ◽  
pp. 63-76 ◽  
Author(s):  
BORIS A. TINOCO ◽  
PEDRO X. ASTUDILLO ◽  
STEVEN C. LATTA ◽  
CATHERINE H. GRAHAM

SummaryThe Violet-throated MetaltailMetallura baroniis a high altitude hummingbird endemic to south-central Ecuador currently considered globally ‘Endangered’. Here we present the first detailed assessment of its distribution, ecology and conservation. We first used a maximum entropy model (Maxent model) to create a predicted distribution for this species based on very limited species occurrence data. We used this model to guide field surveys for the species between April and October 2006. We found a positive relationship between model values and species presence, indicating that the model was a useful tool to predict species occurrence and guide exploration. In the sites where the metaltail was found we gathered data on its habitat requirements, food resources and behaviour. Our results indicate that Violet-throated Metaltail is restricted to the Western Cordillera of the Andes Mountains in Azuay and Cañar provinces of Ecuador, with an area of extent of less than 2,000 km2. Deep river canyons to the north and south, lack of suitable habitat, and potential interspecific competition in the east may limit the bird's distribution. The species occurred in three distinct habitats, includingPolylepiswoodland, the upper edge of the montane forest, and in shrubby paramo, but we found no difference in relative abundance among these habitats. The metaltail seems to tolerate moderate human intervention in its habitats as long as some native brushy cover is maintained. We found thatBrachyotumsp.,Berberissp., andBarnadesiasp. were important nectar resources. The ‘Endangered’ status of this species is supported due to its restricted distribution in fragmented habitats which are under increasing human pressures.


2002 ◽  
Vol 41 (8) ◽  
pp. 872-884 ◽  
Author(s):  
Julia Bilbao ◽  
Argimiro H. de Miguel ◽  
Harry D. Kambezidis

1998 ◽  
Vol 50 (2) ◽  
pp. 157-166 ◽  
Author(s):  
Helge W. Arz ◽  
Jürgen Pätzold ◽  
Gerold Wefer

The stable isotope composition of planktonic foraminifera correlates with evidence for pulses of terrigenous sediment in a sediment core from the upper continental slope off northeastern Brazil. Stable oxygen isotope records of the planktonic foraminiferal species Globigerinoides sacculiferand Globigerinoides ruber(pink) reveal sub-Milankovitch changes in sea-surface hydrography during the last 85,000 yr. Warming of the surface water coincided with terrigenous sedimentation pulses that are inferred from high XRF intensities of Ti and Fe, and which suggest humid conditions in northeast Brazil. These tropical signals correlate with climatic oscillations recorded in Greenland ice cores (Dansgaard-Oeschger cycles) and in sediment cores from the North Atlantic (Heinrich events). Trade winds may have caused changes in the North Brazil Current that altered heat and salt flux into the North Atlantic, thus affecting the growth and decay of the large glacial ice sheets.


Sign in / Sign up

Export Citation Format

Share Document