scholarly journals High-performance blockchain system for fast certification of manufacturing data

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Diogo Costa ◽  
Miguel Teixeira ◽  
Armando N. Pinto ◽  
José Santos

AbstractIntegration of blockchain systems into industrial applications show promise in increasing security, trust, and transparency along the value-chain during product and process tracking. However, current solutions suffer performance deficiencies, or often disregard legacy devices still in operation. We propose a blockchain system built upon an IoT architecture that is secure, modular, easily scalable, and deployable for fast certification of manufacturing data, compatible with current industrial landscapes. First, the proposed architecture is presented along with elements required to manage network functions. Second, easing integration with existing manufacturing solutions, custom APIs are created and subsequently explained. This grants the platform plug-and-play capabilities, requiring minimal hardware and software configuration for deployment. Lastly, a prototype is designed to validate the solution, concluding the viability of the proposed architecture as a fast and secure certification method of manufacturing data.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Christie ◽  
Adrian Abel

Abstract This chapter provides an overview of the structural and synthetic chemistry, and the industrial applications, of dioxazine pigments, a small group of high performance organic pigments. The color violet (or purple) has frequently assumed a prominent position in history, on account of its rarity and cost. The natural colorant Tyrian purple and the first synthetic textile dye, Mauveine, are prime examples of this unique historical feature. CI Pigment Violet 23, also referred to as Dioxazine Violet or Carbazole Violet, is one of the most universally used organic pigments, by far the most important industrial pigment in the violet shade area. Dioxazine Violet is also unique as the dominant industrial violet pigment providing a brilliant, intense violet color and an excellent all-round set of fastness properties. The pigment has a polycyclic molecular structure, originally described wrongly as a linear arrangement, and later shown to adopt an S-shaped arrangement on the basis of X-ray structural analysis. Two other dioxazine pigments are of rather lesser importance. The synthesis and manufacturing route to CI Pigment Violet 23 is described in the review. Finally, a survey of the principal current applications of the individual dioxazine pigments is presented.


2018 ◽  
Vol 51 (4) ◽  
pp. 291-336 ◽  
Author(s):  
Antimo Graziano ◽  
Shaffiq Jaffer ◽  
Mohini Sain

Blends of polyethylene (PE) and polypropylene (PP) have always been the subject of intense reasearch for encouraging polymer waste recycling while producing new materials for specific applications in a sustainable way. However, being thermodynamically immiscible, these polyolefins form a binary system usually exhibiting lower performances compared with those of the homopolymers. Many studies have been carried out to better understand the PE/PP blend compatibilization for developing a high-performance and cost-effective product. Both nonreactive and reactive compatibilization promote the brittle to ductile transition for a PE/PP blend. However, the final product usually does not meet the requirements for high demanding commercial applications. Therefore, further PE/PP modification with a reinforcing filler, being either synthetic or natural, proved to be a good method for manufacturing high-performance reinforcend polymer blend composites, with superior and tailored properties. This review summarizes the recent progress in compatibilization techniques applied for enhancing the interfacial adhesion between PE and PP. Moreover, future perspectives on better understanding the influence of themodynamics on PE/PP synergy are discussed to introduce more effective compatibilization strategies, which will allow this blend to be used for innovative industrial applications.


2016 ◽  
Vol 256 ◽  
pp. 319-327 ◽  
Author(s):  
Mario Rosso ◽  
Ildiko Peter ◽  
Ivano Gattelli

During the last decades under the enthusiastic and competent guidance of Mr Chiarmetta SSM processes attained in Italy at Stampal Spa (Torino) an unquestionable high level of industrial development with the production of large numbers of high performance automotive parts, like variety of suspension support, engine suspension mounts, steering knuckle, front suspension wheel, arm and rear axle. Among the most highlighted findings SSM processes demonstrated their capability to reduce the existing gap between casting and forging, moreover during such a processes there are the opportunity to better control the defect level.Purpose of this paper is to highlight the research work and the SSM industrial production attained and developed by Mr G.L. Chiarmetta, as well as to give an overview concerning some alternative methods for the production of enhanced performance light alloys components for critical industrial applications and to present an analysis of a new rheocasting process suitable for the manufacturing of high performance industrial components.


Author(s):  
Jian Xiong ◽  
Ailin Li ◽  
Ye Liu ◽  
Liming Wang ◽  
Xiaohong Qin ◽  
...  

Integrating metal-organic frameworks (MOFs) into flexible polymeric matrices can improve their practical processibility and enlarge industrial applications greatly. However, current methods suffer from the serious aggregation of MOFs, low MOF...


2016 ◽  
Author(s):  
Georgios P Katsikas ◽  
Marcel Enguehard ◽  
Maciej Kuźniar ◽  
Gerald Q Maguire Jr. ◽  
Dejan Kostić

In this paper we introduce SNF, a framework that synthesizes (S) network function (NF) service chains by eliminating redundant I/O and repeated elements, while consolidating stateful cross layer packet operations across the chain. SNF uses graph composition and set theory to determine traffic classes handled by a service chain composed of multiple elements. It then synthesizes each traffic class using a minimal set of new elements that apply single-read-single-write and early-discard operations. Our SNF prototype takes a baseline state-of-the-art network functions virtualization (NFV) framework to the level of performance required for practical NFV service deployments. Software-based SNF realizes long (up to 10 NFs) and stateful service chains that achieve line-rate 40 Gbps throughput (up to 8.5x greater than the baseline NFV framework). Hardware-assisted SNF, using a commodity OpenFlow switch, shows that our approach scales at 40 Gbps for Internet Service Provider-level NFV deployments.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Se Young Yoon ◽  
Zongli Lin ◽  
Wei Jiang ◽  
Paul E. Allaire

Surge is a dynamic flow instability that can cause extensive damage to compressors and other components. One common challenge that many surge control methods in the literature face when implemented in industrial applications is the unavailability of the high performance actuators and accurate flow rate measurements that are required to suppress surge. In this paper we present the experimental results of employing active magnetic bearings in order to suppress the surge instability in a centrifugal compressor. In addition, we compare how the selection of the flow estimation method affects the effectiveness of the implemented surge suppression controller. The experimental data demonstrates that the best combination of controller and flow estimator tested in this work allows the compressor to operate deep into the former surge region when the controller is activated, moving the minimum flow rate at the surge initiation point by 21%. This allows the compression system to operate at the highest efficiency/pressure point in the characteristic curve, while still retaining a very conservative surge margin separating the allowed compressor operating region from the surge inception point even if unexpected system changes occur.


2021 ◽  
Vol 890 ◽  
pp. 17-24
Author(s):  
Aurel Valentin Bîrdeanu ◽  
Alin Constantin Murariu ◽  
Horia Florin Daşcău ◽  
Iuliana Duma

Reproducibility in respect to welded structures realization is one of the main requirements for a wide variety of industrial applications. One of the international tendencies regarding the use of the steel is the replacing, in critical areas, of structural steels with high performance steel, e.g. with HSLA steels. The paper presents the results of a factorial designed experimental program focused on determining mathematical correlations between the GMAW process parameters for T joints of 4mm thick steel plates of structural (S235JR+AR according to SR EN 10025-2) and hot-rolled, high-strength low-alloy (HSLA) steel plates (S420MC according to EN 10025-4), respectively. A comparison between the obtained mathematical correlations that connect the welding parameters and the main mechanical characteristics is presented. The correlations can be used for applying the optimal combination of welding process parameters for realizing the T-joints of welded products.


Sign in / Sign up

Export Citation Format

Share Document