scholarly journals Hybrid quantum classical graph neural networks for particle track reconstruction

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Cenk Tüysüz ◽  
Carla Rieger ◽  
Kristiane Novotny ◽  
Bilge Demirköz ◽  
Daniel Dobos ◽  
...  

AbstractThe Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) will be upgraded to further increase the instantaneous rate of particle collisions (luminosity) and become the High Luminosity LHC (HL-LHC). This increase in luminosity will significantly increase the number of particles interacting with the detector. The interaction of particles with a detector is referred to as “hit”. The HL-LHC will yield many more detector hits, which will pose a combinatorial challenge by using reconstruction algorithms to determine particle trajectories from those hits. This work explores the possibility of converting a novel graph neural network model, that can optimally take into account the sparse nature of the tracking detector data and their complex geometry, to a hybrid quantum-classical graph neural network that benefits from using variational quantum layers. We show that this hybrid model can perform similar to the classical approach. Also, we explore parametrized quantum circuits (PQC) with different expressibility and entangling capacities, and compare their training performance in order to quantify the expected benefits. These results can be used to build a future road map to further develop circuit-based hybrid quantum-classical graph neural networks.

2021 ◽  
Vol 40 (3) ◽  
pp. 1-13
Author(s):  
Lumin Yang ◽  
Jiajie Zhuang ◽  
Hongbo Fu ◽  
Xiangzhi Wei ◽  
Kun Zhou ◽  
...  

We introduce SketchGNN , a convolutional graph neural network for semantic segmentation and labeling of freehand vector sketches. We treat an input stroke-based sketch as a graph with nodes representing the sampled points along input strokes and edges encoding the stroke structure information. To predict the per-node labels, our SketchGNN uses graph convolution and a static-dynamic branching network architecture to extract the features at three levels, i.e., point-level, stroke-level, and sketch-level. SketchGNN significantly improves the accuracy of the state-of-the-art methods for semantic sketch segmentation (by 11.2% in the pixel-based metric and 18.2% in the component-based metric over a large-scale challenging SPG dataset) and has magnitudes fewer parameters than both image-based and sequence-based methods.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Georges Aad ◽  
Anne-Sophie Berthold ◽  
Thomas Calvet ◽  
Nemer Chiedde ◽  
Etienne Marie Fortin ◽  
...  

AbstractThe ATLAS experiment at the Large Hadron Collider (LHC) is operated at CERN and measures proton–proton collisions at multi-TeV energies with a repetition frequency of 40 MHz. Within the phase-II upgrade of the LHC, the readout electronics of the liquid-argon (LAr) calorimeters of ATLAS are being prepared for high luminosity operation expecting a pileup of up to 200 simultaneous proton–proton interactions. Moreover, the calorimeter signals of up to 25 subsequent collisions are overlapping, which increases the difficulty of energy reconstruction by the calorimeter detector. Real-time processing of digitized pulses sampled at 40 MHz is performed using field-programmable gate arrays (FPGAs). To cope with the signal pileup, new machine learning approaches are explored: convolutional and recurrent neural networks outperform the optimal signal filter currently used, both in assignment of the reconstructed energy to the correct proton bunch crossing and in energy resolution. The improvements concern in particular energies derived from overlapping pulses. Since the implementation of the neural networks targets an FPGA, the number of parameters and the mathematical operations need to be well controlled. The trained neural network structures are converted into FPGA firmware using automated implementations in hardware description language and high-level synthesis tools. Very good agreement between neural network implementations in FPGA and software based calculations is observed. The prototype implementations on an Intel Stratix-10 FPGA reach maximum operation frequencies of 344–640 MHz. Applying time-division multiplexing allows the processing of 390–576 calorimeter channels by one FPGA for the most resource-efficient networks. Moreover, the latency achieved is about 200 ns. These performance parameters show that a neural-network based energy reconstruction can be considered for the processing of the ATLAS LAr calorimeter signals during the high-luminosity phase of the LHC.


2020 ◽  
Author(s):  
Douglas Meneghetti ◽  
Reinaldo Bianchi

This work proposes a neural network architecture that learns policies for multiple agent classes in a heterogeneous multi-agent reinforcement setting. The proposed network uses directed labeled graph representations for states, encodes feature vectors of different sizes for different entity classes, uses relational graph convolution layers to model different communication channels between entity types and learns distinct policies for different agent classes, sharing parameters wherever possible. Results have shown that specializing the communication channels between entity classes is a promising step to achieve higher performance in environments composed of heterogeneous entities.


2020 ◽  
Vol 34 (04) ◽  
pp. 3898-3905 ◽  
Author(s):  
Claudio Gallicchio ◽  
Alessio Micheli

We address the efficiency issue for the construction of a deep graph neural network (GNN). The approach exploits the idea of representing each input graph as a fixed point of a dynamical system (implemented through a recurrent neural network), and leverages a deep architectural organization of the recurrent units. Efficiency is gained by many aspects, including the use of small and very sparse networks, where the weights of the recurrent units are left untrained under the stability condition introduced in this work. This can be viewed as a way to study the intrinsic power of the architecture of a deep GNN, and also to provide insights for the set-up of more complex fully-trained models. Through experimental results, we show that even without training of the recurrent connections, the architecture of small deep GNN is surprisingly able to achieve or improve the state-of-the-art performance on a significant set of tasks in the field of graphs classification.


2021 ◽  
Vol 2 (4) ◽  
pp. 1-8
Author(s):  
Martin Happ ◽  
Matthias Herlich ◽  
Christian Maier ◽  
Jia Lei Du ◽  
Peter Dorfinger

Modeling communication networks to predict performance such as delay and jitter is important for evaluating and optimizing them. In recent years, neural networks have been used to do this, which may have advantages over existing models, for example from queueing theory. One of these neural networks is RouteNet, which is based on graph neural networks. However, it is based on simplified assumptions. One key simplification is the restriction to a single scheduling policy, which describes how packets of different flows are prioritized for transmission. In this paper we propose a solution that supports multiple scheduling policies (Strict Priority, Deficit Round Robin, Weighted Fair Queueing) and can handle mixed scheduling policies in a single communication network. Our solution is based on the RouteNet architecture as part of the "Graph Neural Network Challenge". We achieved a mean absolute percentage error under 1% with our extended model on the evaluation data set from the challenge. This takes neural-network-based delay estimation one step closer to practical use.


2020 ◽  
Author(s):  
Janosch Menke ◽  
Oliver Koch

Molecular fingerprints are essential for different cheminformatics approaches like similarity-based virtual screening. In this work, the concept of neural (network) fingerprints in the context of similarity search is introduced in which the activation of the last hidden layer of a trained neural network represents the molecular fingerprint. The neural fingerprint performance of five different neural network architectures was analyzed and compared to the well-established Extended Connectivity Fingerprint (ECFP) and an autoencoder-based fingerprint. This is done using a published compound dataset with known bioactivity on 160 different kinase targets. We expect neural networks to combine information about the molecular space of<br>already known bioactive compounds together with the information on the molecular structure of the query and by doing so enrich the fingerprint. The results show that indeed neural fingerprints can greatly improve the performance of similarity searches. Most importantly, it could be shown that the neural fingerprint performs well even for kinase targets that were not included in the training. Surprisingly, while Graph Neural Networks (GNNs) are thought to offer an advantageous alternative, the best performing neural fingerprints were based on traditional fully connected layers using the ECFP4 as input. The best performing kinase-specific neural fingerprint will be provided for public use.


2019 ◽  
Vol 134 (7) ◽  
Author(s):  
J. Arjona Martínez ◽  
O. Cerri ◽  
M. Spiropulu ◽  
J. R. Vlimant ◽  
M. Pierini

2021 ◽  
Vol 3 (1) ◽  
pp. 84-94
Author(s):  
Liang Zhang ◽  
Jingqun Li ◽  
Bin Zhou ◽  
Yan Jia

Identifying fake news on media has been an important issue. This is especially true considering the wide spread of rumors on popular social networks such as Twitter. Various kinds of techniques have been proposed for automatic rumor detection. In this work, we study the application of graph neural networks for rumor classification at a lower level, instead of applying existing neural network architectures to detect rumors. The responses to true rumors and false rumors display distinct characteristics. This suggests that it is essential to capture such interactions in an effective manner for a deep learning network to achieve better rumor detection performance. To this end we present a simplified aggregation graph neural network architecture. Experiments on publicly available Twitter datasets demonstrate that the proposed network has performance on a par with or even better than that of state-of-the-art graph convolutional networks, while significantly reducing the computational complexity.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3125
Author(s):  
Sho Ishida ◽  
Tomo Miyazaki ◽  
Yoshihiro Sugaya ◽  
Shinichiro Omachi

Feature extraction is essential for chemical property estimation of molecules using machine learning. Recently, graph neural networks have attracted attention for feature extraction from molecules. However, existing methods focus only on specific structural information, such as node relationship. In this paper, we propose a novel graph convolutional neural network that performs feature extraction with simultaneously considering multiple structures. Specifically, we propose feature extraction paths specialized in node, edge, and three-dimensional structures. Moreover, we propose an attention mechanism to aggregate the features extracted by the paths. The attention aggregation enables us to select useful features dynamically. The experimental results showed that the proposed method outperformed previous methods.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1500
Author(s):  
Xiangde Zhang ◽  
Yuan Zhou ◽  
Jianping Wang ◽  
Xiaojun Lu

Session-based recommendations aim to predict a user’s next click based on the user’s current and historical sessions, which can be applied to shopping websites and APPs. Existing session-based recommendation methods cannot accurately capture the complex transitions between items. In addition, some approaches compress sessions into a fixed representation vector without taking into account the user’s interest preferences at the current moment, thus limiting the accuracy of recommendations. Considering the diversity of items and users’ interests, a personalized interest attention graph neural network (PIA-GNN) is proposed for session-based recommendation. This approach utilizes personalized graph convolutional networks (PGNN) to capture complex transitions between items, invoking an interest-aware mechanism to activate users’ interest in different items adaptively. In addition, a self-attention layer is used to capture long-term dependencies between items when capturing users’ long-term preferences. In this paper, the cross-entropy loss is used as the objective function to train our model. We conduct rich experiments on two real datasets, and the results show that PIA-GNN outperforms existing personalized session-aware recommendation methods.


Sign in / Sign up

Export Citation Format

Share Document