scholarly journals Saline stress affects the pH-dependent regulation of the transcription factor PacC in the dermatophyte Trichophyton interdigitale

2020 ◽  
Vol 51 (4) ◽  
pp. 1585-1591
Author(s):  
Larissa Gomes da Silva ◽  
Maíra Pompeu Martins ◽  
Pablo Rodrigo Sanches ◽  
Nalu Teixeira de Aguiar Peres ◽  
Nilce Maria Martinez-Rossi ◽  
...  
1999 ◽  
Vol 181 (24) ◽  
pp. 7524-7530 ◽  
Author(s):  
Ana M. Ramon ◽  
Amalia Porta ◽  
William A. Fonzi

ABSTRACT The ability to respond to ambient pH is critical to the growth and virulence of the fungal pathogen Candida albicans. This response entails the differential expression of several genes affecting morphogenesis. To investigate the mechanism of pH-dependent gene expression, the C. albicans homolog of pacC, designated PRR2 (for pH response regulator), was identified and cloned. pacC encodes a zinc finger-containing transcription factor that mediates pH-dependent gene expression inAspergillus nidulans. Mutants lacking PRR2 can no longer induce the expression of alkaline-expressed genes or repress acid-expressed genes at alkaline pH. Although the mutation did not affect growth of the cells at acid or alkaline pH, the mutants exhibited medium-conditional defects in filamentation. PRR2was itself expressed in a pH-conditional manner, and its induction at alkaline pH was controlled by PRR1. PRR1 is homologous to palF, a regulator of pacC. Thus,PRR2 expression is controlled by a pH-dependent feedback loop. The results demonstrate that the pH response pathway ofAspergillus is conserved and that this pathway has been adapted to control dimorphism in C. albicans.


PLoS ONE ◽  
2012 ◽  
Vol 7 (12) ◽  
pp. e50596 ◽  
Author(s):  
Lars Poulsen ◽  
Mikael Rørdam Andersen ◽  
Anna Eliasson Lantz ◽  
Jette Thykaer

2020 ◽  
Vol 6 (8) ◽  
Author(s):  
Irene Picazo ◽  
Oier Etxebeste ◽  
Elena Requena ◽  
Aitor Garzia ◽  
Eduardo Antonio Espeso

Fungi have developed the ability to overcome extreme growth conditions and thrive in hostile environments. The model fungus Aspergillus nidulans tolerates, for example, ambient alkalinity up to pH 10 or molar concentrations of multiple cations. The ability to grow under alkaline pH or saline stress depends on the effective function of at least three regulatory pathways mediated by the zinc-finger transcription factor PacC, which mediates the ambient pH regulatory pathway, the calcineurin-dependent CrzA and the cation homeostasis responsive factor SltA. Using RNA sequencing, we determined the effect of external pH alkalinization or sodium stress on gene expression. The data show that each condition triggers transcriptional responses with a low degree of overlap. By sequencing the transcriptomes of the null mutant, the role of SltA in the above-mentioned homeostasis mechanisms was also studied. The results show that the transcriptional role of SltA is wider than initially expected and implies, for example, the positive control of the PacC-dependent ambient pH regulatory pathway. Overall, our data strongly suggest that the stress response pathways in fungi include some common but mostly exclusive constituents, and that there is a hierarchical relationship among the main regulators of stress response, with SltA controlling pacC expression, at least in A. nidulans.


2016 ◽  
Vol 12 (8) ◽  
pp. 2417-2426 ◽  
Author(s):  
D. K. Deochand ◽  
I. C. Perera ◽  
R. B. Crochet ◽  
N. C. Gilbert ◽  
M. E. Newcomer ◽  
...  

Reversible protonation of histidine at the dimer interface of HucR controls interconversion between molten globule and compact folded state.


Author(s):  
David P. Bazett-Jones ◽  
Mark L. Brown

A multisubunit RNA polymerase enzyme is ultimately responsible for transcription initiation and elongation of RNA, but recognition of the proper start site by the enzyme is regulated by general, temporal and gene-specific trans-factors interacting at promoter and enhancer DNA sequences. To understand the molecular mechanisms which precisely regulate the transcription initiation event, it is crucial to elucidate the structure of the transcription factor/DNA complexes involved. Electron spectroscopic imaging (ESI) provides the opportunity to visualize individual DNA molecules. Enhancement of DNA contrast with ESI is accomplished by imaging with electrons that have interacted with inner shell electrons of phosphorus in the DNA backbone. Phosphorus detection at this intermediately high level of resolution (≈lnm) permits selective imaging of the DNA, to determine whether the protein factors compact, bend or wrap the DNA. Simultaneously, mass analysis and phosphorus content can be measured quantitatively, using adjacent DNA or tobacco mosaic virus (TMV) as mass and phosphorus standards. These two parameters provide stoichiometric information relating the ratios of protein:DNA content.


Nephrology ◽  
2000 ◽  
Vol 5 (3) ◽  
pp. A92-A92
Author(s):  
Takazoe K ◽  
Foti R ◽  
Hurst La ◽  
Atkins Rc ◽  
Nikolic‐Paterson DJ.

2001 ◽  
Vol 120 (5) ◽  
pp. A31-A31
Author(s):  
H KATAOKA ◽  
T JOH ◽  
T OHSHIMA ◽  
Y ITOH ◽  
K SENOO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document