Understanding heat and drought stress adaptation mechanisms in maize on the molecular level

Author(s):  
Fortunate Makore ◽  
Casper Nyaradzai Kamutando ◽  
Rejoice Shumirai Nyoni ◽  
Shorai Dari ◽  
Edmore Gasura ◽  
...  
2016 ◽  
Vol 4 (5) ◽  
pp. 367-376 ◽  
Author(s):  
Kwabena Darkwa ◽  
Daniel Ambachew ◽  
Hussein Mohammed ◽  
Asrat Asfaw ◽  
Matthew W. Blair

2015 ◽  
Vol 66 (9) ◽  
pp. 904 ◽  
Author(s):  
Gurmeen Rakhra ◽  
Arun Dev Sharma ◽  
Jatinder Singh

Approximately 70% of crop yield losses are caused by abiotic stresses, with drought being the most serious threat to crop production in many areas of the world. Plants have developed physiological and biochemical responses at multiple levels to allow them to grow and survive under drought stress. Among these, hydrophilins (BSPs, proteins soluble after boiling), representing 0.2% of the total genome, play an important role in the stress adaptation in plants. In this study, we examined the effect of drought on BSPs at different developmental stages of leaves and seeds in drought-tolerant (cv. PBW 175) and drought-susceptible (cv. PBW 621) cultivars of Triticum aestivum. The BSP profiles of seeds were outlined via SDS-PAGE followed by immunoblot analysis using anti-HSP (heat shock protein-90), anti-GST (glutathione S-transferases) and anti-p40 (protein 40). In SDS-PAGE profile, BSPs were detected in a genotype- and treatment-dependent manner. Notably, no BSPs were detected in shoots at any stage, whereas in seeds, many BSPs were detected, indicating organ-specific regulation of BSPs. In western blotting, the induced accumulation of protein bands Bsp40-51 and 59 and presence of differential band of BsHSP44 under drought conditions was observed only in tolerant cv. PBW 175, not in sensitive cv. PBW 621, indicating the roles of such proteins in drought-stress adaptation. BSPs were accumulated at different developmental stages in a cultivar- and stage-dependent manner. The induced expression of different BSPs under drought conditions in tolerant cv. PBW 175 implies the relevance of these BSPs under drought conditions. Notably, the different BSPs were also expressed under normal growth and developmental stages at 57 and 76 days post-anthesis, implying their key role in earlier stages and maturity of grain development.


Author(s):  
M. Malosetti ◽  
J.M. Ribaut ◽  
M. Vargas ◽  
J. Crossa ◽  
M.P. Boer ◽  
...  

2016 ◽  
Vol 11 (12) ◽  
pp. e1247136 ◽  
Author(s):  
Navdeep Kaur ◽  
Kamal Kirat ◽  
Shivani Saini ◽  
Isha Sharma ◽  
Pascal Gantet ◽  
...  

2014 ◽  
Vol 12 (5) ◽  
pp. 578-589 ◽  
Author(s):  
Amandeep Mittal ◽  
Srinivas S. L. Gampala ◽  
Glen L. Ritchie ◽  
Paxton Payton ◽  
John J. Burke ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 259
Author(s):  
Mahmoud F. Seleiman ◽  
Nasser Al-Suhaibani ◽  
Nawab Ali ◽  
Mohammad Akmal ◽  
Majed Alotaibi ◽  
...  

Drought stress, being the inevitable factor that exists in various environments without recognizing borders and no clear warning thereby hampering plant biomass production, quality, and energy. It is the key important environmental stress that occurs due to temperature dynamics, light intensity, and low rainfall. Despite this, its cumulative, not obvious impact and multidimensional nature severely affects the plant morphological, physiological, biochemical and molecular attributes with adverse impact on photosynthetic capacity. Coping with water scarcity, plants evolve various complex resistance and adaptation mechanisms including physiological and biochemical responses, which differ with species level. The sophisticated adaptation mechanisms and regularity network that improves the water stress tolerance and adaptation in plants are briefly discussed. Growth pattern and structural dynamics, reduction in transpiration loss through altering stomatal conductance and distribution, leaf rolling, root to shoot ratio dynamics, root length increment, accumulation of compatible solutes, enhancement in transpiration efficiency, osmotic and hormonal regulation, and delayed senescence are the strategies that are adopted by plants under water deficit. Approaches for drought stress alleviations are breeding strategies, molecular and genomics perspectives with special emphasis on the omics technology alteration i.e., metabolomics, proteomics, genomics, transcriptomics, glyomics and phenomics that improve the stress tolerance in plants. For drought stress induction, seed priming, growth hormones, osmoprotectants, silicon (Si), selenium (Se) and potassium application are worth using under drought stress conditions in plants. In addition, drought adaptation through microbes, hydrogel, nanoparticles applications and metabolic engineering techniques that regulate the antioxidant enzymes activity for adaptation to drought stress in plants, enhancing plant tolerance through maintenance in cell homeostasis and ameliorates the adverse effects of water stress are of great potential in agriculture.


Genes ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1041 ◽  
Author(s):  
Rayyan Khan ◽  
Peilu Zhou ◽  
Xinghua Ma ◽  
Lei Zhou ◽  
Yuanhua Wu ◽  
...  

Drought stress is one of the main factors limiting crop production, which provokes a number of changes in plants at physiological, anatomical, biochemical and molecular level. To unravel the various mechanisms underpinning tobacco (Nicotiana tabacum L.) drought stress tolerance, we conducted a comprehensive physiological, anatomical, biochemical and transcriptome analyses of three tobacco cultivars (i.e., HongHuaDaJinYuan (H), NC55 (N) and Yun Yan-100 (Y)) seedlings that had been exposed to drought stress. As a result, H maintained higher growth in term of less reduction in plant fresh weight, dry weight and chlorophyll content as compared with N and Y. Anatomical studies unveiled that drought stress had little effect on H by maintaining proper leaf anatomy while there were significant changes in the leaf anatomy of N and Y. Similarly, H among the three varieties was the least affected variety under drought stress, with more proline content accumulation and a powerful antioxidant defense system, which mitigates the negative impacts of reactive oxygen species. The transcriptomic analysis showed that the differential genes expression between HongHuaDaJinYuan, NC55 and Yun Yan-100 were enriched in the functions of plant hormone signal transduction, starch and sucrose metabolism, and arginine and proline metabolism. Compared to N and Y, the differentially expressed genes of H displayed enhanced expression in the corresponding pathways under drought stress. Together, our findings offer insights that H was more tolerant than the other two varieties, as evidenced at physiological, biochemical, anatomical and molecular level. These findings can help us to enhance our understanding of the molecular mechanisms through the networks of various metabolic pathways mediating drought stress adaptation in tobacco.


Author(s):  
Jaroslav Klápště ◽  
Jonathan Lecoy ◽  
María del Rosario García-Gil

Sign in / Sign up

Export Citation Format

Share Document