Recent advances in ABO3 perovskites: their gas-sensing performance as resistive-type gas sensors

2019 ◽  
Vol 57 (1) ◽  
pp. 24-39 ◽  
Author(s):  
Peresi Majura Bulemo ◽  
Il-Doo Kim
Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 905 ◽  
Author(s):  
Md Khan ◽  
Mulpuri Rao ◽  
Qiliang Li

Toxic gases, such as NOx, SOx, H2S and other S-containing gases, cause numerous harmful effects on human health even at very low gas concentrations. Reliable detection of various gases in low concentration is mandatory in the fields such as industrial plants, environmental monitoring, air quality assurance, automotive technologies and so on. In this paper, the recent advances in electrochemical sensors for toxic gas detections were reviewed and summarized with a focus on NO2, SO2 and H2S gas sensors. The recent progress of the detection of each of these toxic gases was categorized by the highly explored sensing materials over the past few decades. The important sensing performance parameters like sensitivity/response, response and recovery times at certain gas concentration and operating temperature for different sensor materials and structures have been summarized and tabulated to provide a thorough performance comparison. A novel metric, sensitivity per ppm/response time ratio has been calculated for each sensor in order to compare the overall sensing performance on the same reference. It is found that hybrid materials-based sensors exhibit the highest average ratio for NO2 gas sensing, whereas GaN and metal-oxide based sensors possess the highest ratio for SO2 and H2S gas sensing, respectively. Recently, significant research efforts have been made exploring new sensor materials, such as graphene and its derivatives, transition metal dichalcogenides (TMDs), GaN, metal-metal oxide nanostructures, solid electrolytes and organic materials to detect the above-mentioned toxic gases. In addition, the contemporary progress in SO2 gas sensors based on zeolite and paper and H2S gas sensors based on colorimetric and metal-organic framework (MOF) structures have also been reviewed. Finally, this work reviewed the recent first principle studies on the interaction between gas molecules and novel promising materials like arsenene, borophene, blue phosphorene, GeSe monolayer and germanene. The goal is to understand the surface interaction mechanism.


2020 ◽  
Vol 8 (22) ◽  
pp. 7272-7299 ◽  
Author(s):  
Tingqiang Yang ◽  
Yueli Liu ◽  
Huide Wang ◽  
Yanhong Duo ◽  
Bin Zhang ◽  
...  

0D functionalization on 1D or 2D backbones is highly effective to improve gas sensing performance due to synergistic effects.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5910
Author(s):  
Andrea Gaiardo ◽  
Giulia Zonta ◽  
Sandro Gherardi ◽  
Cesare Malagù ◽  
Barbara Fabbri ◽  
...  

Among the various chemoresistive gas sensing properties studied so far, the sensing response reproducibility, i.e., the capability to reproduce a device with the same sensing performance, has been poorly investigated. However, the reproducibility of the gas sensing performance is of fundamental importance for the employment of these devices in on-field applications, and to demonstrate the reliability of the process development. This sensor property became crucial for the preparation of medical diagnostic tools, in which the use of specific chemoresistive gas sensors along with a dedicated algorithm can be used for screening diseases. In this work, the reproducibility of SmFeO3 perovskite-based gas sensors has been investigated. A set of four SmFeO3 devices, obtained from the same screen-printing deposition, have been tested in laboratory with both controlled concentrations of CO and biological fecal samples. The fecal samples tested were employed in the clinical validation protocol of a prototype for non-invasive colorectal cancer prescreening. Sensors showed a high reproducibility degree, with an error lower than 2% of the response value for the test with CO and lower than 6% for fecal samples. Finally, the reproducibility of the SmFeO3 sensor response and recovery times for fecal samples was also evaluated.


2020 ◽  
Vol 8 (38) ◽  
pp. 13108-13126
Author(s):  
Hanie Hashtroudi ◽  
Ian D. R. Mackinnon ◽  
Mahnaz Shafiei

Gas sensing performance of conductometric devices based on 2D hybrid nanomaterials operating at room temperature.


2021 ◽  
Author(s):  
Qiuci Yu ◽  
Yuchi Zhang ◽  
Yan Xu

Metal oxide-based gas sensors have drawn tremendous research interests owing to their various compositions and selective and improved performance. However, the development of a targeted metal oxide with controlled microstructures...


2021 ◽  
Vol 9 (11) ◽  
pp. 3773-3794
Author(s):  
Aaryashree ◽  
Pratik V. Shinde ◽  
Amitesh Kumar ◽  
Dattatray J. Late ◽  
Chandra Sekhar Rout

Black phosphorous (BP) has emerged as a potential sensing material due to its exceptional physicochemical properties. The review presents both the theoretical and experimental aspects of the BP-based gas sensors.


Sensor Review ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Srinivas Rao Sriram ◽  
Saidireddy Parne ◽  
Venkata Satya Chidambara Swamy Vaddadi ◽  
Damodar Edla ◽  
Nagaraju P. ◽  
...  

Purpose This paper aims to focus on the basic principle of WO3 gas sensors to achieve high gas-sensing performance with good stability and repeatability. Metal oxide-based gas sensors are widely used for monitoring toxic gas leakages in the environment, industries and households. For better livelihood and a healthy environment, it is extremely helpful to have sensors with higher accuracy and improved sensing features. Design/methodology/approach In the present review, the authors focus on recent synthesis methods of WO3-based gas sensors to enhance sensing features towards toxic gases. Findings This work has proved that the synthesis method led to provide different morphologies of nanostructured WO3-based material in turn to improve gas sensing performance along with its sensing mechanism. Originality/value In this work, the authors reviewed challenges and possibilities associated with the nanostructured WO3-based gas sensors to trace toxic gases such as ammonia, H2S and NO2 for future research.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6781
Author(s):  
Ying Wang ◽  
Li Duan ◽  
Zhen Deng ◽  
Jianhui Liao

Semiconducting metal oxide-based nanowires (SMO-NWs) for gas sensors have been extensively studied for their extraordinary surface-to-volume ratio, high chemical and thermal stabilities, high sensitivity, and unique electronic, photonic and mechanical properties. In addition to improving the sensor response, vast developments have recently focused on the fundamental sensing mechanism, low power consumption, as well as novel applications. Herein, this review provides a state-of-art overview of electrically transduced gas sensors based on SMO-NWs. We first discuss the advanced synthesis and assembly techniques for high-quality SMO-NWs, the detailed sensor architectures, as well as the important gas-sensing performance. Relationships between the NWs structure and gas sensing performance are established by understanding general sensitization models related to size and shape, crystal defect, doped and loaded additive, and contact parameters. Moreover, major strategies for low-power gas sensors are proposed, including integrating NWs into microhotplates, self-heating operation, and designing room-temperature gas sensors. Emerging application areas of SMO-NWs-based gas sensors in disease diagnosis, environmental engineering, safety and security, flexible and wearable technology have also been studied. In the end, some insights into new challenges and future prospects for commercialization are highlighted.


Sensor Review ◽  
2017 ◽  
Vol 37 (2) ◽  
pp. 127-136 ◽  
Author(s):  
Md.Masud Rana ◽  
Dauda Sh. Ibrahim ◽  
M.R. Mohd Asyraf ◽  
S. Jarin ◽  
Amanullah Tomal

Purpose This review paper aims to focus on recent advances of carbon nanotubes (CNTs) to produce gas sensors. Gas sensors are widely used for monitoring hazardous gas leakages and emissions in the industry, households and other areas. For better safety and a healthy environment, it is highly desirable to have gas sensors with higher accuracy and enhanced sensing features. Design/methodology/approach In this review, the authors focus on recent contributions of CNTs to the technology for developing different types of gas sensors. The design, fabrication process and sensing mechanism of each gas sensor are summarized, together with their advantages and disadvantages. Findings Nowadays, CNTs are well-known materials which have attracted a significant amount of attention owing to their excellent electrical, electronic and mechanical properties. On exposure to various gases, their properties allow the detection of gases using different methods. Therefore, over recent years, researchers have developed several different types of gas sensors along with other types of sensors for temperature, strain, pressure, etc. Originality/value The main purpose of this review is to introduce CNTs as candidates for future research in the field of gas sensing applications and to focus on current technical challenges associated with CNT-based gas sensors.


Sign in / Sign up

Export Citation Format

Share Document