scholarly journals Investigations of masonry churches seismic performance with numerical models: application to a case study

2021 ◽  
Vol 21 (4) ◽  
Author(s):  
Michele D’Amato ◽  
Roselena Sulla

AbstractRecovering and preserving ancient churches is necessary to ensure the transmission of this cultural heritage to the future generations. To this scope, it is necessary to evaluate their performance in seismic prone areas, to design interventions capable of reducing their vulnerability ensuring also their safety use for the faithful. In this paper, investigations on seismic performance of masonry churches are illustrated by applying two different numerical methods on a case study, an existing brick masonry church. The seismic assessment is conducted by applying two simplified methods proposed by the current Italian Directive containing the Guidelines for assessment and reduction of cultural heritage seismic risk. Moreover, linear kinematic analysis is used also for investigating the influence of main parameters governing to the main façade simple overturning and narthex longitudinal response. The investigations performed highlight that the activation multiplier of macro-element response mechanism may significantly vary according to the assumptions made and that also, as narthex longitudinal response, a minimization procedure of the activation multiplier is required.

2020 ◽  
Vol 12 (19) ◽  
pp. 8279
Author(s):  
Ester Alba Pagán ◽  
María del Mar Gaitán Salvatella ◽  
María Dolores Pitarch ◽  
Arabella León Muñoz ◽  
María del Mar Moya Toledo ◽  
...  

Nowadays, cultural heritage is more than ever linked to the present. It links us to our cultural past through the conscious act of preserving and bequeathing to future generations, turning society into its custodian. The appreciation of cultural heritage happens not only because of its communicative power, but also because of its economic power, through sustainable development and the promotion of creative industries. This paper presents SILKNOW, an EU-H2002 funded project and its application to cultural heritage, as well as to creative industries and design innovation. To this end, it presents the use of image recognition tools applied to cultural heritage, through the interoperability of data in the open-access registers of silk museums and its presentation, analysis and creative process carried out by the design students of EASD Valencia as a case study, in the branches of jewellery and fashion project, inspired by the heritage of silk.


Author(s):  
Karim Aljawhari ◽  
Roberto Gentile ◽  
Fabio Freddi ◽  
Carmine Galasso

AbstractThis study investigates the effects of ground-motion sequences on fragility and vulnerability of reinforced concrete (RC) moment-resisting frames (MRFs). Two four-storey, four-bay RC MRFs are selected as case studies. These structures, which share the same geometry, are representative of distinct vulnerability classes in the Mediterranean region and are characterized by different material properties, cross-section dimensions, and detailing. The first case study is a ductile MRF designed according to Eurocode 8 (i.e., a special-code frame), while the second is a non-ductile MRF designed to sustain only gravity loads (i.e., a pre-code frame). The influence of masonry infills on their seismic performance is also investigated. Advanced numerical models are developed to perform cloud-based sequential nonlinear time history analyses using ground-motion sequences assembled by randomly pairing two real records via Latin hypercube sampling. Different structure-specific damage states are considered to derive fragility curves for the undamaged structures, when subjected to a single ground-motion record, and state-dependent fragility curves by considering the additional damage induced by a second ground-motion record within the sequence. Damage-to-loss models are then used to derive mean vulnerability relationships. Results of the analysis show the importance of considering the effect of damage accumulation in the pre-code frames. Moreover, the presence of infills shows an overall positive contribution to the seismic performance of both frame types. Vector-valued vulnerability relationships accounting for the damaging effect of two ground-motion records are finally presented in the form of mean vulnerability surfaces.


2022 ◽  
pp. 183-202
Author(s):  
F. Füsun İstanbullu Dinçer ◽  
Seda Özdemir Akgül

This chapter aims to give information about how the digitalization process is using technologies suitable for today's conditions in the transmission of cultural heritage to future generations and its preservation, what methods are being employed, the concept of digital heritage, the developments that took place and the projects that were carried out in the digitization of cultural heritage. In addition, it is also aimed in this chapter to evaluate the cultural heritage sites within the framework of this new understanding and to examine how these areas can be redefined with new technical possibilities. At this point, after reviewing the literature about the cultural and digital heritage, the importance of cultural heritage is referred to in detail. Finally, a case study is conducted by the authors via compiling the V-must.net website established to develop virtual museums, blog comments, and academic studies carried out in respect to this project.


2019 ◽  
Vol 38 (2) ◽  
pp. 329-355 ◽  
Author(s):  
Samantha Organ

Purpose Heritage tourism has become increasingly popular, and improving the sustainability of such sites is essential both nationally and internationally. The purpose of this paper is to explore the opportunities and challenges of improving the condition and sustainability of a chapel at a busy international heritage tourist attraction. Design/methodology/approach A case study approach was adopted. This utilised interviews with four of the primary building professionals involved with the refurbishment project. Documentary analysis and observations were also used. Findings The present case study presents the opportunities and challenges faced by a tourist heritage attraction. Improvements to the condition and sustainability of such assets are essential to ensure their sustained and enhanced use, and the protection of heritage buildings. Such projects create opportunities to increase knowledge and understanding about these assets as well as enhancing opportunities for meaning making for visitors. The paper highlights the importance of a strong leader and a balanced team working towards common objectives. Further, whilst synergies between conservation and sustainability exist, there are also tensions and compromises. Research limitations/implications This case study highlights the opportunities and challenges of improving the condition and sustainability of built cultural heritage at a tourist attraction. Opportunities included increased knowledge and understanding about the heritage asset; enhancement of values for present and future generations; improved condition, increased usability; and increased sustainability. Challenges were: team turnover; delays resulting from archaeological findings; previous work resulting in building defects; the existing building condition; and unfamiliarity and the uncertainty regarding particular measures. Practical implications The practical implications of this case study include ensuring clear project objectives and a balanced project team are in place. These should be enhanced by a good system of information recording throughout the project to limit the impact of staff absence. Good communication within the team and with external members such as manufacturers will reduce the impact of unfamiliar products and aid in decision making. Future research should explore whether these findings are applicable to other heritage tourist attractions, and whether visitors’ narrative encounters with the asset change following a sustainability improvement project. Originality/value Limited research has been previously performed on improving the sustainability of built cultural heritage at tourist attractions. This research investigates the opportunities and challenges facing building professionals in improving such heritage assets. The improvement of heritage tourist attractions requires careful consideration. Whilst they need to be conserved for future generations, increasing the sustainability of such assets is essential to ensure their continued usability.


Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 604
Author(s):  
Michele Mirra ◽  
Geert Ravenshorst

The inadequate seismic performance of existing masonry buildings is often linked to the excessively low in-plane stiffness of timber diaphragms and the poor quality of their connections to the walls. However, relevant past studies and seismic events have also shown that rigid diaphragms could be detrimental for existing buildings and do not necessarily lead to an increase in their seismic performance. Therefore, this work explores the opportunity of optimizing the retrofitting of existing timber floors by means of a dissipative strengthening option, consisting of a plywood panel overlay. On the basis of past experimental tests and previously formulated analytical and numerical models for simulating the in-plane response of these retrofitted diaphragms, in this work nonlinear incremental dynamic analyses were performed on three case–study buildings. For each structure three configurations were analyzed: an as-built one, one having floors retrofitted with concrete slabs and one having dissipative diaphragms strengthened with plywood panels. The results showed that the additional beneficial hysteretic energy dissipation of the optimized diaphragms is relevant and can largely increase the seismic performance of the analyzed buildings, while rigid floors only localize the dissipation in the walls. These outcomes can contribute to an efficient seismic retrofitting of existing masonry buildings, demonstrating once more the great potential of wood-based techniques in comparison to the use of reinforced concrete for creating rigid diaphragms.


2013 ◽  
Vol 6 (2) ◽  
pp. 18-27 ◽  
Author(s):  
L. Piroddi ◽  
S. Calcina ◽  
A. Trogu ◽  
W. Bakinowska ◽  
M.L. Casnedi ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
George Karagiannakis

This paper deals with state of the art risk and resilience calculations for industrial plants. Resilience is a top priority issue on the agenda of societies due to climate change and the all-time demand for human life safety and financial robustness. Industrial plants are highly complex systems containing a considerable number of equipment such as steel storage tanks, pipe rack-piping systems, and other installations. Loss Of Containment (LOC) scenarios triggered by past earthquakes due to failure on critical components were followed by severe repercussions on the community, long recovery times and great economic losses. Hence, facility planners and emergency managers should be aware of possible seismic damages and should have already established recovery plans to maximize the resilience and minimize the losses. Seismic risk assessment is the first step of resilience calculations, as it establishes possible damage scenarios. In order to have an accurate risk analysis, the plant equipment vulnerability must be assessed; this is made feasible either from fragility databases in the literature that refer to customized equipment or through numerical calculations. Two different approaches to fragility assessment will be discussed in this paper: (i) code-based Fragility Curves (FCs); and (ii) fragility curves based on numerical models. A carbon black process plant is used as a case study in order to display the influence of various fragility curve realizations taking their effects on risk and resilience calculations into account. Additionally, a new way of representing the total resilience of industrial installations is proposed. More precisely, all possible scenarios will be endowed with their weighted recovery curves (according to their probability of occurrence) and summed together. The result is a concise graph that can help stakeholders to identify critical plant equipment and make decisions on seismic mitigation strategies for plant safety and efficiency. Finally, possible mitigation strategies, like structural health monitoring and metamaterial-based seismic shields are addressed, in order to show how future developments may enhance plant resilience. The work presented hereafter represents a highly condensed application of the research done during the XP-RESILIENCE project, while more detailed information is available on the project website https://r.unitn.it/en/dicam/xp-resilience.


The effective altruism movement consists of a growing global community of people who organize significant parts of their lives around two key ideas, represented in its name. Altruism: If we use a significant portion of the resources in our possession—whether money, time, or talents—with a view to helping others, we can improve the world considerably. Effectiveness: When we do put such resources to altruistic use, it is crucial to focus on how much good this or that intervention is reasonably expected to do per unit of resource expended (for example, per dollar donated). While global poverty is a widely used case study in introducing and motivating effective altruism, if the ultimate aim is to do the most good one can with the resources expended, it is far from obvious that global poverty alleviation is highest priority cause area. In addition to ranking possible poverty-alleviation interventions against one another, we can also try to rank interventions aimed at very different types of outcome against one another. This includes, for example, interventions focusing on animal welfare or future generations. The scale and organization of the effective altruism movement encourage careful dialogue on questions that have perhaps long been there, throwing them into new and sharper relief, and giving rise to previously unnoticed questions. In the present volume, the first of its kind, a group of internationally recognized philosophers, economists, and political theorists contribute in-depth explorations of issues that arise once one takes seriously the twin ideas of altruistic commitment and effectiveness.


2021 ◽  
Vol 13 (3) ◽  
pp. 1193
Author(s):  
Anna Podara ◽  
Dimitrios Giomelakis ◽  
Constantinos Nicolaou ◽  
Maria Matsiola ◽  
Rigas Kotsakis

This paper casts light on cultural heritage storytelling in the context of interactive documentary, a hybrid media genre that employs a full range of multimedia tools to document reality, provide sustainability of the production and successful engagement of the audience. The main research hypotheses are enclosed in the statements: (a) the interactive documentary is considered a valuable tool for the sustainability of cultural heritage and (b) digital approaches to documentary storytelling can provide a sustainable form of viewing during the years. Using the Greek interactive documentary (i-doc) NEW LIFE (2013) as a case study, the users’ engagement is evaluated by analyzing items from a seven-year database of web metrics. Specifically, we explore the adopted ways of the interactive documentary users to engage with the storytelling, the depth to which they were involved along with the most popular sections/traffic sources and finally, the differences between the first launch period and latest years were investigated. We concluded that interactivity affordances of this genre enhance the social dimension of cultural, while the key factors for sustainability are mainly (a) constant promotion with transmedia approach; (b) data-driven evaluation and reform; and (c) a good story that gathers relevant niches, with specific interest to the story.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 29
Author(s):  
Mahdi Shadabfar ◽  
Cagri Gokdemir ◽  
Mingliang Zhou ◽  
Hadi Kordestani ◽  
Edmond V. Muho

This paper presents a review of the existing models for the estimation of explosion-induced crushed and cracked zones. The control of these zones is of utmost importance in the rock explosion design, since it aims at optimizing the fragmentation and, as a result, minimizing the fine grain production and recovery cycle. Moreover, this optimization can reduce the damage beyond the set border and align the excavation plan with the geometric design. The models are categorized into three groups based on the approach, i.e., analytical, numerical, and experimental approaches, and for each group, the relevant studies are classified and presented in a comprehensive manner. More specifically, in the analytical methods, the assumptions and results are described and discussed in order to provide a useful reference to judge the applicability of each model. Considering the numerical models, all commonly-used algorithms along with the simulation details and the influential parameters are reported and discussed. Finally, considering the experimental models, the emphasis is given here on presenting the most practical and widely employed laboratory models. The empirical equations derived from the models and their applications are examined in detail. In the Discussion section, the most common methods are selected and used to estimate the damage size of 13 case study problems. The results are then utilized to compare the accuracy and applicability of each selected method. Furthermore, the probabilistic analysis of the explosion-induced failure is reviewed using several structural reliability models. The selection, classification, and discussion of the models presented in this paper can be used as a reference in real engineering projects.


Sign in / Sign up

Export Citation Format

Share Document