scholarly journals The periodic table of photosynthetic purple non-sulfur bacteria: intact cell-metal ions interactions

Author(s):  
Matteo Grattieri ◽  
Rossella Labarile ◽  
Gabriella Buscemi ◽  
Massimo Trotta

AbstractPhotosynthetic purple non-sulfur bacteria (PNB) have been widely utilized as model organisms to study bacterial photosynthesis. More recently, the remarkable resistance of these microorganisms to several metals ions called particular interest. As a result, several research efforts were directed toward clarifying the interactions of metal ions with PNB. The mechanisms of metal ions active uptake and bioabsorption have been studied in detail, unveiling that PNB enable harvesting and removing various toxic ions, thus fostering applications in environmental remediation. Herein, we present the most important achievements in the understanding of intact cell-metal ions interactions and the approaches utilized to study such processes. Following, the application of PNB-metal ions interactions toward metal removal from contaminated environments is presented. Finally, the possible coupling of PNB with abiotic electrodes to obtain biohybrid electrochemical systems is proposed as a sustainable pathway to tune and enhance metal removal and monitoring. Graphic abstract

2015 ◽  
Vol 73 (5) ◽  
pp. 983-992 ◽  
Author(s):  
Francis Ntumba Muya ◽  
Christopher Edoze Sunday ◽  
Priscilla Baker ◽  
Emmanuel Iwuoha

Heavy metal ions such as Cd2+, Pb2+, Cu2+, Mg2+, and Hg2+ from industrial waste water constitute a major cause of pollution for ground water sources. These ions are toxic to man and aquatic life as well, and should be removed from wastewater before disposal. Various treatment technologies have been reported to remediate the potential toxic elements from aqueous media, such as adsorption, precipitation and coagulation. Most of these technologies are associated with some shortcomings, and challenges in terms of applicability, effectiveness and cost. However, adsorption techniques have the capability of effectively removing heavy metals at very low concentration (1–100 mg/L). Various adsorbents have been reported in the literature for this purpose, including, to a lesser extent, the use of hydrogel adsorbents for heavy metal removal in aqueous phase. Here, we provide an in-depth perspective on the design, application and efficiency of hydrogel systems as adsorbents.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1907
Author(s):  
Fatma Hussain Emamy ◽  
Ali Bumajdad ◽  
Jerzy P. Lukaszewicz

Optimizing the physicochemical properties of the chitosan-based activated carbon (Ch-ACs) can greatly enhance its performance toward heavy metal removal from contaminated water. Herein, Ch was converted into a high surface area (1556 m2/g) and porous (0.69 cm3/g) ACs with large content of nitrogen (~16 wt%) using K2CO3 activator and urea as nitrogen-enrichment agents. The prepared Ch-ACs were tested for the removal of Cr(VI) and Pb(II) at different pH, initial metal ions concentration, time, activated carbon dosage, and temperature. For Cr(VI), the best removal was at pH = 2, while for Pb(II) the best pH for its removal was in the range of 4–6. At 25 °C, the Temkin model gives the best fit for the adsorption of Cr(VI), while the Langmuir model was found to be better for Pb(II) ions. The kinetics of adsorption of both heavy metal ions were found to be well-fitted by a pseudo-second-order model. The findings show that the efficiency and the green properties (availability, recyclability, and cost effectiveness) of the developed adsorbent made it a good candidate for wastewaters treatment. As preliminary work, the prepared sorbent was also tested regarding the removal of heavy metals and other contaminations from real wastewater and the obtained results were found to be promising.


2012 ◽  
Vol 518-523 ◽  
pp. 361-368 ◽  
Author(s):  
Rong Bing Fu ◽  
Xin Xing Liu ◽  
Fang Liu ◽  
Jin Ma ◽  
Yu Mei Ma ◽  
...  

A new permeable reactive composite electrode (PRCE) attached with a permeable reactive layer (PRL) of Fe0 and zeolite has been developed for soil pH control and the improved removal efficiency of heavy metal ions (Cd, Ni, Pb, Cu) from soil in electrokinetic remediation process. The effects of different composite electrodes on pH control and heavy metal removal efficiency were studied, and changes in the forms of heavy metals moved onto the electrodes were analyzed. The results showed that with acidic/alkaline zeolite added and renewed in time, the composite electrodes could effectively neutralize and capture H+ and OH- produced from electrolysis of the anolyte and catholyte, avoiding or delaying the formation of acidic/alkaline front in tested soil, preventing premature precipitation of heavy metal ions and over-acidification of soil, and thus significantly improved the heavy metal removal efficiency. Fe0 in composite electrodes could deoxidize and stabilize the heavy metal ions. After that capture and immobilization of the pollutants were achieved. The results also showed that, using "Fe0 + zeolite" PRCE in the cathode with timely renewal, after 15-day remediation with a DC voltage of 1.5 V/cm, the total removal rates of Cd, Pb, Cu and Ni were 49.4%, 47.1%, 36.7% and 39.2%, respectively.


2014 ◽  
Vol 625 ◽  
pp. 889-892 ◽  
Author(s):  
Safoura Daneshfozoun ◽  
Bawadi Abdullah ◽  
Mohd Azmuddin Abdullah

This study developed an effective and economical physical pretreatment of OPEFB to be used as biosorbent for the removal of heavy metal ions such as Cu+2, Zn+2and Pb2+. The effects of fibres sizes, metal ions concentration (100-1000 ppm), initial pH (4-10) and contact time (20-150 min) were investigated in batch system. Samples were characterized with Atomic Absorption Spectrometry (AAS), Transmission Electron Microscopy (TEM) and Fourier Transmission Infra-red Spectroscopy (FTIR). Results showed pH-dependence adsorption efficiency and increased adsorption with initial metal concentrations where more than 92% adsorption efficiency achieved. We have successfully developed an eco-friendly, low cost adsorbent without any chemical modification or excessive energy disposal.


ChemSusChem ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3391-3403
Author(s):  
Fan Yang ◽  
Zunjian Ke ◽  
Zhida Li ◽  
Margaret Patrick ◽  
Zeinab Abboud ◽  
...  

1955 ◽  
Vol 6 (5) ◽  
pp. 685 ◽  
Author(s):  
RS Beckwith

The release of manganese from organic soils by copper has been studied. The results obtained together with the titration curves of acid-washed organic soils, determined in the presence and absence of various added metal ions, support the suggestion of Bremner et al. (1946) that the metals of the first transition series of the periodic table are held in organic soils as complexes. The consequences of the results are discussed particularly in regard to the release of metal ions from soils and their uptake by plants.


2019 ◽  
Vol 124 ◽  
pp. 01051
Author(s):  
Y. Smyatskaya ◽  
A. Toumi ◽  
I. Atamaniuk ◽  
Ia. Vladimirov ◽  
F.K. Donaev ◽  
...  

In this paper, it is proposed to use the biomass of microalgae Chlorella sorokiniana as a biosorbent for wastewater treatment, as well as an oral sorbent. Biosorbents are capable of adsorbing both organic and inorganic compounds, including heavy metals. The sorption capacity depends on the type of aquatic plant and microalgae strain. The use of microalgae and aquatic plants as biosorbents for pollutant treatments is discussed in the introduction part. The biomass of microalgae Chlorella sorokiniana was chosen as the object of this study. The cultivation conditions (temperature, light, pH and aeration) and the optimal biomass harvesting parameters are presented. Dehydration of biomass was carried out in two ways: IR-drying and freeze-drying. The obtained samples were tested for the ability of the biomass to extract heavy metal ions (zinc, cadmium, zinc, copper) from standard solutions. The initial concentration of heavy metal ions in the working solutions was 10 mg/l. Results show that the lyophilized samples demonstrated up to 99.9% of heavy metal removal efficiency. The paper also presents the composition of Chlorella sorokiniana biomass, in which up to 40.97–41.87% are proteins. The analysis of the amino-acid composition showed a ratio of essential to non-essential amino-acids higher than 0.8. All the above results confirm the possibility of using microalgae biomass as an oral sorbent and as an additive in the production of functional foods.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4373
Author(s):  
Danil Kurshanov ◽  
Pavel Khavlyuk ◽  
Mihail Baranov ◽  
Aliaksei Dubavik ◽  
Andrei Rybin ◽  
...  

Heavy metal ions are not subject to biodegradation and could cause the environmental pollution of natural resources and water. Many of the heavy metals are highly toxic and dangerous to human health, even at a minimum amount. This work considered an optical method for detecting heavy metal ions using colloidal luminescent semiconductor quantum dots (QDs). Over the past decade, QDs have been used in the development of sensitive fluorescence sensors for ions of heavy metal. In this work, we combined the fluorescent properties of AgInS2/ZnS ternary QDs and the magnetism of superparamagnetic Fe3O4 nanoparticles embedded in a matrix of porous calcium carbonate microspheres for the detection of toxic ions of heavy metal: Co2+, Ni2+, and Pb2+. We demonstrate a relationship between the level of quenching of the photoluminescence of sensors under exposure to the heavy metal ions and the concentration of these ions, allowing their detection in aqueous solutions at concentrations of Co2+, Ni2+, and Pb2+ as low as ≈0.01 ppm, ≈0.1 ppm, and ≈0.01 ppm, respectively. It also has importance for application of the ability to concentrate and extract the sensor with analytes from the solution using a magnetic field.


2020 ◽  
Vol 15 ◽  
pp. 155892501989895
Author(s):  
Yaewon Park ◽  
Shuang Liu ◽  
Terrence Gardner ◽  
Drake Johnson ◽  
Aaron Keeler ◽  
...  

Manganese-oxidizing fungi support bioremediation through the conversion of manganese ions into manganese oxide deposits that in turn adsorb manganese and other heavy metal ions from the environment. Manganese-oxidizing fungi were immobilized onto nanofiber surfaces to assist remediation of heavy metal–contaminated water. Two fungal isolates, Coniothyrium sp. and Coprinellus sp., from a Superfund site (Lot 86, Farm Unit #1) water treatment system were incubated in the presence of nanofibers. Fungal hyphae had strong association with nanofiber surfaces. Upon fungal attachment to manganese chloride–seeded nanofibers, Coniothyrium sp. catalyzed the conformal deposition of manganese oxide along hyphae and nanofibers, but Coprinellus sp. catalyzed manganese oxide only along its hyphae. Fungi–nanofiber hybrids removed various heavy metals from the water. Heavy metal ions were adsorbed into manganese oxide crystalline structure, possibly by ion exchange with manganese within the manganese oxide. Hybrid materials of fungal hyphae and manganese oxides confined to nanofiber-adsorbed heavy metal ions from water.


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 37
Author(s):  
Nurul Shuhada Mohd Makhtar ◽  
Juferi Idris ◽  
Mohibah Musa ◽  
Yoshito Andou ◽  
Ku Halim Ku Hamid ◽  
...  

High removal of heavy metals using plant-based bioflocculant under low concentration is required due to its low cost, abundant source, and nontoxicity for improved wastewater management and utilization in the water industry. This paper presents a treatment of synthetic wastewater using plant-based Tacca leontopetaloides biopolymer flocculant (TBPF) without modification on its structural polymer chains. It produced a high removal of heavy metals (Zn, Pb, Ni, and Cd) at a low concentration of TBPF dosage. In our previous report, TBPF was characterized and successfully reduced the turbidity, total suspended solids, and color for leachate treatment; however, its effectiveness for heavy metal removal has not been reported. The removal of these heavy metals was performed using a standard jar test procedure at different pH values of synthetic wastewater and TBPF dosages. The effects of hydroxide ion, pH, initial TBPF concentration, initial metal ion concentration, and TBPF dosage were examined using one factorial at the time (OFAT). The results show that the highest removal for Zn, Pb, Ni, and Cd metal ions were 98.4–98.5%, 79–80%, 97–98%, and 92–93%, respectively, using 120 mg/L dosage from the initial concentration of 10% TBPF at pH 10. The final concentrations for Zn, Pb, Ni, and Cd metal ions were 0.043–0.044, 0.41–0.43, 0.037–0.054, and 0.11–0.13 mg/L, respectively, which are below the Standard B discharge limit set by the Department of Environment (DOE), Malaysia. The results show that TBPF has a high potential for the removal of heavy metals, particularly Zn, Pb, Ni, and Cd, in real wastewater treatment.


Sign in / Sign up

Export Citation Format

Share Document