Sub-distributions of pore size: A new approach to correlate pore structure with permeability

1995 ◽  
Vol 25 (4) ◽  
pp. 769-778 ◽  
Author(s):  
Zheng Liu ◽  
Douglas Winslow
2021 ◽  
Vol 11 (5) ◽  
pp. 2113-2125
Author(s):  
Chenzhi Huang ◽  
Xingde Zhang ◽  
Shuang Liu ◽  
Nianyin Li ◽  
Jia Kang ◽  
...  

AbstractThe development and stimulation of oil and gas fields are inseparable from the experimental analysis of reservoir rocks. Large number of experiments, poor reservoir properties and thin reservoir thickness will lead to insufficient number of cores, which restricts the experimental evaluation effect of cores. Digital rock physics (DRP) can solve these problems well. This paper presents a rapid, simple, and practical method to establish the pore structure and lithology of DRP based on laboratory experiments. First, a core is scanned by computed tomography (CT) scanning technology, and filtering back-projection reconstruction method is used to test the core visualization. Subsequently, three-dimensional median filtering technology is used to eliminate noise signals after scanning, and the maximum interclass variance method is used to segment the rock skeleton and pore. Based on X-ray diffraction technology, the distribution of minerals in the rock core is studied by combining the processed CT scan data. The core pore size distribution is analyzed by the mercury intrusion method, and the core pore size distribution with spatial correlation is constructed by the kriging interpolation method. Based on the analysis of the core particle-size distribution by the screening method, the shape of the rock particle is assumed to be a more practical irregular polyhedron; considering this shape and the mineral distribution, the DRP pore structure and lithology are finally established. The DRP porosity calculated by MATLAB software is 32.4%, and the core porosity measured in a nuclear magnetic resonance experiment is 29.9%; thus, the accuracy of the model is validated. Further, the method of simulating the process of physical and chemical changes by using the digital core is proposed for further study.


1971 ◽  
Vol 11 (04) ◽  
pp. 390-398 ◽  
Author(s):  
J.A. Guin ◽  
R.S. Schechter

Abstract A mathematical model representing the changes in pore structure attending the invasion of a porous material by a reactive fluid tending to dissolve the solid bas previously been tested and found to be valid. This mathematical model is solved by a simulation procedure using Monte Carlo techniques. The results so obtained are indicative of the acidization of sandstone using a last-reacting acid (diffusion limited). A correlation relating the permeability improvement to the change in porosity is presented and found to be applicable to a wide class of initial pore-size distributions. This means that the designer need not have explicit knowledge of the initial pore structure to utilize the correlation. The generality of the correlation stems from the fact that after exposure to fast-acting acids (diffusion-controlled reactions) wormholing tends to occur in all porous matrices, and the acid allows preferentially through these channels. Thus, the process is independent of the fine pore structure since the fine pores receive no acid Wormholing bas been observed in almost all experimental studies of acidization, thus further confirming the validity of the model. Introduction Matrix acidization as practiced in the petroleum industry is a simple operation. Acids treated so as to prevent their corrosive attack on metal parts contacted are pumped down the wellbore and forced into the pore spaces of an oil-bearing rock. The rate of penetration is normally maintained small enough to prevent fracturing of the reservoir The aim of matrix acidization is to enhance the permeability of the region around the wellbore by permeability of the region around the wellbore by dissolving either a portion of the rock or of the foreign impurities that may have been introduced during the drilling operations. The success of this technique of oilwell stimulation is attested to by the fact that a significant fraction of the acids used for stimulation are injected at matrix rates. There were, moreover, in excess of 87 million gal of hydrochloric acid used last year in carbonate formations with many other special purpose acids such as acetic and formic having also been used for stimulation purposes. Despite the fact that acids have long been routinely used as a means of stimulating oil wells to greater production, there is, as yet, no reliable design procedure incorporating all of the essential features into a prediction of the new production that will result from a given acid treatment of a particular well. This lack of a design procedure particular well. This lack of a design procedure has been responsible for the rather minimal efforts expended in obtaining meaningful reaction rate data, for there is very little enthusiasm for obtaining data which cannot be put to practical application. This paper is an extension of some recently reported work on predicting the permeability change resulting from acid treatment of an oil-bearing rock. It has been proposed that the changes in the microstructure owing to acidization in a porous rock can be simulated by considering the effect of acidization of a collection of small, randomly distributed capillaries that are interconnected to the extent that a fluid will be conducted from point to point under the influence of an external pressure gradient. This model, the capillaric model, has been used with varying success in understanding the behavior of porous media. The use of the capillaric model in determining only the results of the evolution of a pore-size distribution, rather than as a vehicle for predicting a number of mare or less independent phenomena, such as capillary pressure curves and dispersion, is, as has been pressure curves and dispersion, is, as has been noted by Schechter and Gidley, a more limited and perhaps attainable goal. Taking the capillaric model to be correct, Guin et al. have shown that an equation relating the porosity change and the permeability change caused by an ideally retarded permeability change caused by an ideally retarded acid can be derived without any assumptions. SPEJ P. 390


2016 ◽  
Vol 848 ◽  
pp. 272-278 ◽  
Author(s):  
Sha Qiu ◽  
Yu Fei Tang ◽  
Kang Zhao

Porous Al2O3 ceramics were fabricated by directional freezing and low pressure drying with sucrose solution as the cryogenic medium. The pore structure of the porous ceramics was changed by annealing in the environment of higher than the glass transition temperature of sucrose solution after directional freezing because of changing the size and distribution of crystalline solid. The effects of the annealing time on the pore structure, open porosity and mechanical property of porous ceramics were investigated. The results showed that the pore size of porous ceramics increased substantially with the increase of annealing time. The open porosity of porous ceramics changed slightly with the increase of annealing time, while the compressive strength of porous ceramics showed a trend of decrease. The pore size range of porous Al2O3 ceramics fabricated is from 6.0μm to 110.2μm, the range of porosity was 40.35%-64.58%, the compressive strength range of porous Al2O3 ceramics was from 25.9MPa-126.6MPa. The porous Al2O3 ceramics with different pore structure can be obtained by changing the annealing time.


2012 ◽  
Vol 174-177 ◽  
pp. 1010-1014 ◽  
Author(s):  
Hong Bin Liu ◽  
Yang Ju ◽  
Kai Pei Tian ◽  
Jin Hui Liu ◽  
Li Wang ◽  
...  

The pore structure characteristics of reactive powder concrete (RPC) were investigated by means of the mercury injection method at seven temperature levels, namely, 20°C, 100°C, 150°C, 200°C, 250°C, 300°C, 350°C, respectively. The characteristic parameters such as porosity, pore volume, average pore size and threshold aperture varied with temperatures were analyzed. The results indicate that the porosity, pore volume, threshold aperture and other characteristic parameters of RPC increased with the temperature increasing.


Author(s):  
Petra Foerst ◽  
M. Lechner ◽  
N. Vorhauer ◽  
H. Schuchmann ◽  
E. Tsotsas

The pore structure is a decisive factor for the process efficiency and product quality of freeze dried products. In this work the two-dimensional ice crystal structure was investigated for maltodextrin solutions with different concentrations by a freeze drying microscope. The resulting drying kinetics was investigated for different pore structures. Additionally the three-dimensional pore structure of the freeze dried samples was measured by µ-computed tomography and the pore size distribution was quantified by image analysis techniques. The two- and three-dimensional pore size distributions were compared and linked to the drying kinetics.Keywords: pore size distribution; freeze drying; maltodextrin solution; freeze drying microscope   


2021 ◽  
Vol 5 (4) ◽  
pp. 152
Author(s):  
Shao-Heng He ◽  
Zhi Ding ◽  
Hai-Bo Hu ◽  
Min Gao

In this study, a series of nuclear magnetic resonance (NMR) tests was conducted on calcareous sand, quartz sand, and glass bead with a wide range of grain sizes, to understand the effect of grain size on the micro-pore structure and fractal characteristics of the carbonate-based sand and silicate-based sand. The pore size distribution (PSD) of the tested materials were obtained from the NMR T2 spectra, and fractal theory was introduced to describe the fractal properties of PSD. Results demonstrate that grain size has a significant effect on the PSD of carbonate-based sand and silicate-based sand. As grain size increases, the PSD of sands evolves from a binary structure with two peaks to a ternary structure with three peaks. The increase in the grain size can cause a remarkable increase in the maximum pore size. It is also found that the more irregular the particle shape, the better the continuity between the large and medium pores. In addition, grain size has a considerable effect on the fractal dimension of the micro-pore structure. The increase of grain size can lead to a significant increase in the heterogeneity and fractal dimension in PSD for calcareous sand, quartz sand and glass bead.


2011 ◽  
Vol 250-253 ◽  
pp. 1846-1851
Author(s):  
Xiao Xuan Liu ◽  
Ji Ru Zhang

The micro pore structure of isotropic consolidated clay was studied by using a scanning electron microscope (SEM). A digital imaging technique was applied to analyze the evolution of size, number of pores and their distributions in the process of isotropic consolidation according to the SEM images. Based on the fractal concepts of Koch curve and Sierpinski carpet, the Koch fractal dimension Dk and the Sierpinski fractal dimensionDsof soil pores are obtained from the measured data. The variations of bothDkandDsfollowing the change of micro pore parameters and mechanical properties of clay are investigated. The results show that the porosity and pore size decreases as the consolidation pressure increases, and the range of pore size becomes narrower.Dkreflects the degree of irregularity of the pore-solid interface in soil, and the larger theDkthe more irregular the soil pore profile. The distribution of Dkwas found in agreement with a total normal distribution in soil pore. The magnitude ofDsreflects the variation of porosity of clay under isotropic consolidation. Large fractal corresponds to large consolidation pressure and small porosity.Dsdisplays a significant linear regression relationship with porosity, consolidation pressure, consolidation deformation of clay and an exponential growth relationship with permeability coefficient of clay. Both Dk andDsis sensitive to isotropic consolidation of soil and they may be cited as useful indicators for soil consolidation.


Fractals ◽  
2019 ◽  
Vol 27 (01) ◽  
pp. 1940006 ◽  
Author(s):  
LEI ZHANG ◽  
XUEJUAN ZHANG ◽  
HAO CHAI ◽  
YAOCAI LI ◽  
YONGJIE ZHOU

Fractal dimension is an important parameter in the evaluation of tight reservoirs. For an outcrop section of the Nenjiang formation in the Songliao Basin, China, the pore structure and pore fractal characteristics of shale parasequences were investigated using fractal theory. In addition, factors causing pore structure changes were analyzed using the results of low-temperature nitrogen adsorption and scanning electron microscope (SEM) experiments. Conducive to gas migration and secondary pores development such as dissolution, results showed that nanoscale pores dominated by fracture-like morphology and consequent good internal connectivity were observed in each pore size section within the target layer. Each parasequence is characterized by a sequential upward decrease of average pore size and an upward increase of total pore volume, with an increasing number of pores from 2[Formula: see text]nm to 50[Formula: see text]nm. Pores are isolated from each other, with poor connectivity and relatively complex composition of brittle minerals and clay minerals. Main components of the brittle minerals, quartz and feldspar, occur in 20–50% and higher clay mineral content ranging from 50% to 70%. In the parasequence cycle, clay mineral gradually decreases while the brittle mineral content increases. Fractal dimension is negatively correlated with clay mineral content and positively correlated with brittle mineral (quartz and feldspar) content. The fractal dimension calculated by the imaging method and the FHH method shows an upward increasing tendency in each of the parasequence cycles. This is as a result of different phenomena, varied sediment hydrodynamic forces leading to particle size differences and increased brittle minerals resulting in microcracks, therefore, the fractal dimension of the large pores (imaging method) increases upward in the parasequence. Simultaneously, with increased content and accompanied dissolution of brittle minerals causing an increase of small pores from base to top of the parasequence, the fractal dimension of the small pores (FHH method) grows.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Dengke Liu ◽  
Tao Tian ◽  
Ruixiang Liang ◽  
Fu Yang ◽  
Feng Ye

Understanding pore structure would enable us to obtain a deeper insight into the fluid mechanism in porous media. In this research, multifractal analysis by various experiments is employed to analyze the pore structure and heterogeneity characterization in the source rock in Ordos Basin, China. For this purpose, imaging apparatus, intrusion tests, and nonintrusion methods have been used. The results show that the objective shale reservoir contains complex pore network, and minor pores dominant the pore system. Both intrusion and nonintrusion methods detected pore size distributions show multifractal nature, while the former one demonstrates more heterogeneous features. The pore size distributions acquired by low temperature adsorption and nuclear magnetic resonance have relatively good consistence, indicating that similar pore network detection method may share the same mechanism, and the full-ranged pore size distributions need to be acquired by multitechniques. Chlorite has an obvious impact on the heterogeneity of pore structure in narrow pore size range, while illite and I/S mixed layer influence that in wide range. Kerogen index is the fundamental indicators of geochemical parameters. With the decrease of averaged small and middle/large pore radius, the heterogeneity of pore structures increase in narrow and wide ranges, respectively. This work employed a comprehensive methodology based on multitechniques and helps to explore how pore networks affect reservoir quality in shale reservoirs.


Sign in / Sign up

Export Citation Format

Share Document