Transport mechanism of carbon dioxide through perfluorosulfonate ionomer membranes containing an amine carrier

1996 ◽  
Vol 51 (21) ◽  
pp. 4781-4789 ◽  
Author(s):  
Takeo Yamaguchi ◽  
Carl A. Koval ◽  
Richard D. Noble ◽  
Christopher N. Bowman
2009 ◽  
Vol 640 ◽  
pp. 441-452 ◽  
Author(s):  
JUAN J. HIDALGO ◽  
JESÚS CARRERA

Dissolution of carbon dioxide (CO2) injected into saline aquifers causes an unstable high-density diffusive front. Understanding how instability fingers develop has received much attention because they accelerate dissolution trapping, which favours long-term sequestration. The time for the onset of convection as the dominant transport mechanism has been traditionally studied by neglecting dispersion and treating the CO2–brine interface as a prescribed concentration boundary by analogy to a thermal convection problem. This work explores the effect of these simplifications. Results show that accounting for the CO2 mass flux across the prescribed concentration boundary has little effect on the onset of convection. However, accounting for dispersion causes a reduction of up to two orders of magnitude on the onset time. This implies that CO2 dissolution can be accelerated by activating dispersion as a transport mechanism, which can be achieved adopting a fluctuating injection regime.


1986 ◽  
Vol 32 (1) ◽  
pp. 3335-3343 ◽  
Author(s):  
Ken-Ichiro Itoh ◽  
Yoshiharu Tsujita ◽  
Akira Takizawa ◽  
Takatoshi Kinoshita

Author(s):  
Emilie Planes ◽  
Huu-Dat Nguyen ◽  
Thi Khanh Ly Nguyen ◽  
Nicolas Charvin ◽  
Lionel Flandin ◽  
...  

Author(s):  
K. C. Tsou ◽  
J. Morris ◽  
P. Shawaluk ◽  
B. Stuck ◽  
E. Beatrice

While much is known regarding the effect of lasers on the retina, little study has been done on the effect of lasers on cornea, because of the limitation of the size of the material. Using a combination of electron microscope and several newly developed cytochemical methods, the effect of laser can now be studied on eye for the purpose of correlating functional and morphological damage. The present paper illustrates such study with CO2 laser on Rhesus monkey.


Author(s):  
Charles TurnbiLL ◽  
Delbert E. Philpott

The advent of the scanning electron microscope (SCEM) has renewed interest in preparing specimens by avoiding the forces of surface tension. The present method of freeze drying by Boyde and Barger (1969) and Small and Marszalek (1969) does prevent surface tension but ice crystal formation and time required for pumping out the specimen to dryness has discouraged us. We believe an attractive alternative to freeze drying is the critical point method originated by Anderson (1951; for electron microscopy. He avoided surface tension effects during drying by first exchanging the specimen water with alcohol, amy L acetate and then with carbon dioxide. He then selected a specific temperature (36.5°C) and pressure (72 Atm.) at which carbon dioxide would pass from the liquid to the gaseous phase without the effect of surface tension This combination of temperature and, pressure is known as the "critical point" of the Liquid.


Author(s):  
John L. Beggs ◽  
John D. Waggener ◽  
Wanda Miller

Microtubules (MT) are versatile organelles participating in a wide variety of biological activity. MT involvement in the movement and transport of cytoplasmic components has been well documented. In the course of our study on trauma-induced vasogenic edema in the spinal cord we have concluded that endothelial vesicles contribute to the edema process. Using horseradish peroxidase as a vascular tracer, labeled endothelial vesicles were present in all situations expected if a vesicular transport mechanism was in operation. Frequently,labeled vesicles coalesced to form channels that appeared to traverse the endothelium. The presence of MT in close proximity to labeled vesicles sugg ested that MT may play a role in vesicular activity.


Author(s):  
Shou-kong Fan

Transmission and analytical electron microscopic studies of scale microstructures and microscopic marker experiments have been carried out in order to determine the transport mechanism in the oxidation of Ni-Al alloy. According to the classical theory, the oxidation of nickel takes place by transport of Ni cations across the scale forming new oxide at the scale/gas interface. Any markers deposited on the Ni surface are expected to remain at the scale/metal interface after oxidation. This investigation using TEM transverse section techniques and deposited microscopic markers shows a different result,which indicates that a considerable amount of oxygen was transported inward. This is the first time that such fine-scale markers have been coupled with high resolution characterization instruments such as TEM/STEM to provide detailed information about evolution of oxide scale microstructure.


2001 ◽  
Vol 7 (7) ◽  
pp. 789-796 ◽  
Author(s):  
L. H. Ziska ◽  
O. Ghannoum ◽  
J. T. Baker ◽  
J. Conroy ◽  
J. A. Bunce ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document