scholarly journals Role of fatty acids in regulation of phosphoenolpyruvate and citrulline synthesis in rabbit liver mitochondria

FEBS Letters ◽  
1974 ◽  
Vol 47 (1) ◽  
pp. 60-65 ◽  
Author(s):  
Jadwiga Bryła
1976 ◽  
Vol 156 (2) ◽  
pp. 301-307 ◽  
Author(s):  
A M Glasgow ◽  
H P Chase

19 The effect of pent-4-enoic acid, propionic acid and several other short-chain fatty acids on citrulline synthesis in rat liver mitochondria was studied. 2. Pent-4-enoate at 1 mM inhibited mitochondrial citulline synthesis by about 80-90%. It is concluded that pent-4-enoate inhibits citrulline synthesis by interfering with some aspect of mitochondrial energy metabolism. This results in impairment of mitochondrial ornithine uptake or depletion of mitochondrial ATP, which, in turn, impairs carbamoyl phosphate synthesis or both. Evidence in support of this conclusion includes: pent-4-enoate has no effect on citrulline synthesis supported by succinate or exogenous ATP; pent-4-enoate lowers the medium plus mitochondrial ATP concentration; finally, when glutamate is the oxidizable substrate, pent-4-enoate decreases the carbamoyl phosphate concentration in mitochondria incubated without ornithine to minimize citrulline synthesis and impairs the mitochondrial uptake of ornithine, but it has neither effect when succinate is the oxidizable substrate. 4. Propionate, butyrate and crotonate also inhibit mitochondrial citrulline synthesis, but much less than pent-4-enoate. 5. Acetate, pentanoate, pent-2-enoate, hexanoate, octanoate, isovalerate, tiglylate and α-methylbutyrate have little or no effect on mitochondrial citrulline synthesis.


Diabetes ◽  
1993 ◽  
Vol 42 (11) ◽  
pp. 1626-1634 ◽  
Author(s):  
A. Avogaro ◽  
P. Beltramello ◽  
L. Gnudi ◽  
A. Maran ◽  
A. Valerio ◽  
...  

2021 ◽  
Vol 3 (Supplement_1) ◽  
pp. i19-i19
Author(s):  
Divya Ravi ◽  
Carmen del Genio ◽  
Haider Ghiasuddin ◽  
Arti Gaur

Abstract Glioblastomas (GBM) or Stage IV gliomas, are the most aggressive of primary brain tumors and are associated with high mortality and morbidity. Patients diagnosed with this lethal cancer have a dismal survival rate of 14 months and a 5-year survival rate of 5.6% despite a multimodal therapeutic approach, including surgery, radiation therapy, and chemotherapy. Aberrant lipid metabolism, particularly abnormally active de novo fatty acid synthesis, is recognized to have a key role in tumor progression and chemoresistance in cancers. Previous studies have reported a high expression of fatty acid synthase (FASN) in patient tumors, leading to multiple investigations of FASN inhibition as a treatment strategy. However, none of these have developed as efficacious therapies. Furthermore, when we profiled FASN expression using The Cancer Genome Atlas (TCGA) we determined that high FASN expression in GBM patients did not confer a worse prognosis (HR: 1.06; p-value: 0.51) and was not overexpressed in GBM tumors compared to normal brain. Therefore, we need to reexamine the role of exogenous fatty acid uptake over de novofatty acid synthesis as a potential mechanism for tumor progression. Our study aims to measure and compare fatty acid oxidation (FAO) of endogenous and exogenous fatty acids between GBM patients and healthy controls. Using TCGA, we have identified the overexpression of multiple enzymes involved in mediating the transfer and activation of long-chain fatty acids (LCFA) in GBM tumors compared to normal brain tissue. We are currently conducting metabolic flux studies to (1) assess the biokinetics of LCFA degradation and (2) establish exogenous versus endogenous LCFA preferences between patient-derived primary GBM cells and healthy glial and immune cells during steady state and glucose-deprivation.


1972 ◽  
Vol 247 (9) ◽  
pp. 2969-2971 ◽  
Author(s):  
Robert C. Baxter ◽  
Charles W. Carlson ◽  
Burton M. Pogell

Sign in / Sign up

Export Citation Format

Share Document