scholarly journals Annealing cycle effects on the TL sensitivity of CaF2 : Tm (TLD-300)

1985 ◽  
Vol 36 (12) ◽  
pp. 1000-1002 ◽  
Author(s):  
C. Furetta ◽  
J.W.N. Tuyn
Keyword(s):  
2010 ◽  
Vol 638-642 ◽  
pp. 3479-3484 ◽  
Author(s):  
Roberta O. Rocha ◽  
Tulio M.F. Melo ◽  
Dagoberto Brandao Santos

The influence of continuous annealing variables on the microstructure and mechanical properties of a C-Mn Dual Phase (DP) steel was studied. The annealing cycles were simulated using a Gleeble machine. Some specimens were quenched at different stages of the annealing cycle in order to evaluate the microstructural evolution during the annealing process. Tensile tests and microstrutural analysis were carried out. The results showed that high heating rates increased the final recrystallization temperature and as a consequence the microstructure obtained was refined. Austenite grain nucleation and growth were also influenced by the heating rates. Soaking temperature was the most influent variable on the mechanical properties, i. e., the yield strength increased and the tensile strength decreased with an increase in the soaking temperature. Microstructural analysis showed that not only martensite, but also bainite and martensite-retained autenite constituent (MA) were formed. Undissolved carbides were also detected by transmission electron microscopy.


1990 ◽  
Vol 181 ◽  
Author(s):  
A. Katz ◽  
S. J. Pearton ◽  
M. Geva

ABSTRACTAn intensive comparison between the efficiency of InP rapid thermal annealing within two types of SiC-coated graphite susceptors and by using the more conventional proximity approach, in providing degradation-free substrate surface morphology, was carried out. The superiority of annealing within a susccptor was clearly demonstrated through the evaluation of AuGe contact performance to carbon-implanted InP substrates, which were annealed to activate the implants prior to the metallization. The susceptor annealing provided better protection against edge degradation, slip formation and better surface morphology, due to the elimination of P outdiffusion and pit formation. The two SiC-coated susceptors that were evaluated differ from each other in their geometry. The first type must be charged with the group V species prior to any annealing cycle. Under the optimum charging conditions, effective surface protection was provided only to one anneal (750°C, 10s) of InP before charging was necessary. The second contained reservoirs for provision of the group V element partial pressure, enabled high temperature annealing at the InP without the need for continual recharging of the susceptor. Thus, one has the ability to subsequentially anneal a lot of InP wafers at high temperatures without inducing any surface deterioration.


1990 ◽  
Vol 201 ◽  
Author(s):  
James S. Im ◽  
Jung H. Shin ◽  
Harry A. Atwater

AbstractIn situ electron microscopy has been used to observe crystal nucleation and growth in amorphous Si films. Results demonstrate that a repeated intermediate temperature ion irradiation/thermal annealing cycle can lead to suppression of nucleation in amorphous regions without inhibition of crystal growth of existing large crystals. Fundamentally, the experimental results indicate that the population of small crystal clusters near the critical cluster size is affected by intermediate temperature ion irradiation. Potential applications of the intermediate temperature irradiation/thermal anneal cycle to lateral solid epitaxy of Si and thin film device technology are discussed.


2011 ◽  
Vol 178-179 ◽  
pp. 188-191
Author(s):  
Julien Nicolai ◽  
Nelly Burle ◽  
Bernard Pichaud

High temperature annealing effects on Oxygen-induced defects formation has been studied by IR-LST, FTIR and TEM techniques. The results show that most defects are amorphous oxygen precipitates and/or dislocations. Ham’s theory has been modified in order to take into account the variations of interstitial oxygen concentration during the formation of precipitates. Comparison between experimental data and simulation shows that the specificity of annealing cycle is to combine both nucleation and growth stages. The morphology and stoechiometry of SiOx precipitates are also studied.


1989 ◽  
Vol 169 ◽  
Author(s):  
Richard DeVito ◽  
Brian G. Pazol ◽  
John H. Chaffin ◽  
Roger F. Belt ◽  
Robert Uhrin

AbstractThin films of YBa2Cu3O7‐δ have been deposited on samples of LaGaO3 substrates by multilayer E‐beam evaporation. Alternating layers of Cu, Y2O3, and BaF2 were deposited on polished (001) substrates. An annealing study was performed to thoroughly blend the layers and minimize substrate interdiffusion. Films were prepared by annealing in wet oxygen at temperatures between 800 °C and 1000 °C. Four point resistance versus temperature curves were obtained to determine the superconducting transition temperature and transition width. Auger depth profiling was performed as a function of annealing cycle to determine the amount of blending of the layers and quantify any substrate diffusion..


2010 ◽  
Vol 1245 ◽  
Author(s):  
Vikram Dalal ◽  
Ashutosh Shyam ◽  
Dan Congreve ◽  
Max Noack

AbstractWe report on the growth and properties of novel amorphous Silicon (a-Si:H) p-i-n devices prepared using chemical annealing with argon gas. The i layer in the p-i-n devices was grown using a layer by layer approach, where the growth of a very thin a-Si:H layer (7-30 angstroms) grown using a silane:argon mixture was followed by chemical anneal by argon ions. Repeated cycling of such growth/anneal cycles was used to produce the desired total thickness of the i layer. The thickness of the a-Si layer, and duration of the anneal time, were varied systematically. Pressure and power of the plasma discharge were also systematically varied. It was found that a thin a-Si layer, <10 angstroms, and low pressures which led to relatively high ion flux on the surface, gave rise to a significantly smaller bandgap in the device, as indicated by a significant lateral shift in the quantum efficiency vs. photon energy curve to lower energies. The smallest Tauc gap observed was in the range of 1.62 eV. Corresponding to this smaller bandgap, the current in the solar cell increased, and the voltage decreased. The Urbach energies of the valence band tail were also measured in the device, using the quantum efficiency vs. energy curve, and found to be in the range of45 meV, indicating high quality devices. Too much ion bombardment led to an increase in Urbach energy, and an increase in defect density in the material. Raman spectra of the device i layer indicated an amorphous structure. When hydrogen was added to argon during the annealing cycle, some materials turned microcrystalline, as indicated by the Raman spectrum, and confirmed using x-ray diffraction.


Sign in / Sign up

Export Citation Format

Share Document