Synthesis and preliminary processing of the sol-gel derived β-quartz lithium aluminum silicates

1986 ◽  
Vol 82 (1-3) ◽  
pp. 329-342 ◽  
Author(s):  
J. Covino ◽  
F.G.A. De Laat ◽  
R.A. Welsbie
Ionics ◽  
2021 ◽  
Vol 27 (5) ◽  
pp. 2017-2025
Author(s):  
Nikolas Schiffmann ◽  
Ethel C. Bucharsky ◽  
Karl G. Schell ◽  
Charlotte A. Fritsch ◽  
Michael Knapp ◽  
...  

AbstractLithium aluminum titanium phosphate (LATP) is known to have a high Li-ion conductivity and is therefore a potential candidate as a solid electrolyte. Via sol-gel route, it is already possible to prepare the material at laboratory scale in high purity and with a maximum Li-ion conductivity in the order of 1·10−3 s/cm at room temperature. However, for potential use in a commercial, battery-cell upscaling of the synthesis is required. As a first step towards this goal, we investigated whether the sol-gel route is tolerant against possible deviations in the concentration of the precursors. In order to establish a possible process window for sintering, the temperature interval from 800 °C to 1100 °C and holding times of 10 to 480 min were evaluated. The resulting phase compositions and crystal structures were examined by X-ray diffraction. Impedance spectroscopy was performed to determine the electrical properties. The microstructure of sintered pellets was analyzed by scanning electron microscopy and correlated to both density and ionic conductivity. It is shown that the initial concentration of the precursors strongly influences the formation of secondary phases like AlPO4 and LiTiOPO4, which in turn have an influence on ionic conductivity, densification behavior, and microstructure evolution.


1986 ◽  
Vol 73 ◽  
Author(s):  
J. Covino ◽  
F. G. A. De Laat ◽  
R. A. Welsbie

ABSTRACTLithium Aluminum Silicate (LAS) glass-ceramic compositions with and without phosphorous have been synthesized by Sol-Gel techniques. Resulting LAStype powders are herein designated as NZ and NZP. X-Ray analysis, thermogravimetric analysis (TGA), particle size measurements, and thermal dilatometric shrinkage measurements have been performed on these samples. The NZ and NZP powders in calcined form, as well as commercially-available LAS glass-ceramic produce x-ray diffraction pattern very similar to the pattern of Virgilite LixAlxSi3−xO6 (x=0.5–1.0). There is little difference between powders with and without phosphorous in the diffuse reflectance spectra (DRS). Preliminary results show that the material can be easily processed into glass ceramics.


2016 ◽  
Vol 09 (05) ◽  
pp. 1650066 ◽  
Author(s):  
Shicheng Yu ◽  
Andreas Mertens ◽  
Xin Gao ◽  
Deniz Cihan Gunduz ◽  
Roland Schierholz ◽  
...  

A ceramic solid-state electrolyte of lithium aluminum titanium phosphate with the composition of Li[Formula: see text]Al[Formula: see text]Ti[Formula: see text](PO[Formula: see text] (LATP) was synthesized by a sol–gel method using a pre-dissolved Ti-source. The annealed LATP powders were subsequently processed in a binder-free dry forming method and sintered under air for the pellet preparation. Phase purity, density, microstructure as well as ionic conductivity of the specimen were characterized. The highest density (2.77[Formula: see text][Formula: see text] with an ionic conductivity of [Formula: see text] (at 30[Formula: see text]C) was reached at a sintering temperature of 1100[Formula: see text]C. Conductivity of LATP ceramic electrolyte is believed to be significantly affected by both, the AlPO4 secondary phase content and the ceramic electrolyte microstructure. It has been found that with increasing sintering temperature, the secondary-phase content of AlPO4 increased. For sintering temperatures above 1000[Formula: see text]C, the secondary phase has only a minor impact, and the ionic conductivity is predominantly determined by the microstructure of the pellet, i.e. the correlation between density, porosity and particle size. In that respect, it has been demonstrated, that the conductivity increases with increasing particle size in this temperature range and density.


2009 ◽  
Vol 66 ◽  
pp. 112-114
Author(s):  
Yong Li ◽  
Xiao Li Zhang ◽  
Ling Li ◽  
Hong Sheng Wang ◽  
Hong Yi Jiang

In this research, different amounts of LaCl3 were added to the lithium aluminum silicate (LAS) ceramics and the sample powder was prepared by sol-gel method. The effect of LaCl3 on the density, bending strength and the thermal expansion of the obtained ceramics was mainly investigated because LaCl3 is heavier than the lithium aluminum silicate (LAS) ceramics and the superfluous of La2O3 can be introduced into the sol solution.


Author(s):  
E. Bischoff ◽  
O. Sbaizero

Fiber or whisker reinforced ceramics show improved toughness and strength. Bridging by intact fibers in the crack wake and fiber pull-out after failure contribute to the additional toughness. These processes are strongly influenced by the sliding and debonding resistance of the interfacial region. The present study examines the interface in a laminated 0/90 composite consisting of SiC (Nicalon) fibers in a lithium-aluminum-silicate (LAS) glass-ceramic matrix. The material shows systematic changes in sliding resistance upon heat treatment.As-processed samples were annealed in air at 800 °C for 2, 4, 8, 16 and 100 h, and for comparison, in helium at 800 °C for 4 h. TEM specimen preparation of as processed and annealed material was performed with special care by cutting along directions having the fibers normal and parallel to the section plane, ultrasonic drilling, dimpling to 100 pm and final ionthinning. The specimen were lightly coated with Carbon and examined in an analytical TEM operated at 200 kV.


Author(s):  
George C. Ruben ◽  
Merrill W. Shafer

Traditionally ceramics have been shaped from powders and densified at temperatures close to their liquid point. New processing methods using various types of sols, gels, and organometallic precursors at low temperature which enable densificatlon at elevated temperatures well below their liquidus, hold the promise of producing ceramics and glasses of controlled and reproducible properties that are highly reliable for electronic, structural, space or medical applications. Ultrastructure processing of silicon alkoxides in acid medium and mixtures of Ludox HS-40 (120Å spheres from DuPont) and Kasil (38% K2O &62% SiO2) in basic medium have been aimed at producing materials with a range of well defined pore sizes (∼20-400Å) to study physical phenomena and materials behavior in well characterized confined geometries. We have studied Pt/C surface replicas of some of these porous sol-gels prepared at temperatures below their glass transition point.


Author(s):  
V. Kaushik ◽  
P. Maniar ◽  
J. Olowolafe ◽  
R. Jones ◽  
A. Campbell ◽  
...  

Lead zirconium titanate films (Pb (Zr,Ti) O3 or PZT) are being considered for potential application as dielectric films in memory technology due to their high dielectric constants. PZT is a ferroelectric material which shows spontaneous polarizability, reversible under applied electric fields. We report herein some results of TEM studies on thin film capacitor structures containing PZT films with platinum-titanium electrodes.The wafers had a stacked structure consisting of PZT/Pt/Ti/SiO2/Si substrate as shown in Figure 1. Platinum acts as electrode material and titanium is used to overcome the problem of platinum adhesion to the oxide layer. The PZT (0/20/80) films were deposited using a sol-gel method and the structure was annealed at 650°C and 800°C for 30 min in an oxygen ambient. XTEM imaging was done at 200KV with the electron beam parallel to <110> zone axis of silicon.Figure 2 shows the PZT and Pt layers only, since the structure had a tendency to peel off at the Ti-Pt interface during TEM sample preparation.


Author(s):  
J.M. Schwartz ◽  
L.F. Francis ◽  
L.D. Schmidt ◽  
P.S. Schabes-Retchkiman

Ceramic thin films and coatings are of interest for electrical, optical, magnetic and thermal barrier applications. Critical for improved properties in thin films is the development of specific microstructures during processing. To this end, the sol-gel method is advantageous as a versatile processing route. The sol-gel process involves depositing a solution containing metalorganic or colloidal ceramic precursors onto a substrate and heating the deposited layer to form a crystalline or non-crystalline ceramic coating. This route has several advantages, including the ability to create tailored microstructures and properties, to coat large or small areas, simple or complex shapes, and to more easily prepare multicomponent ceramics. Sol-gel derived coatings are amorphous in the as-deposited state and develop their crystalline structure and microstructure during heat-treatment. We are particularly interested in studying the amorphous to crystalline transformation, because many key features of the microstructure such as grain size and grain size distribution may be linked to this transformation.


Sign in / Sign up

Export Citation Format

Share Document