Inhibitory effects of bile acids on the uptake, metabolism, and transport of water-soluble substances in the small intestine of the rat

Life Sciences ◽  
1963 ◽  
Vol 2 (6) ◽  
pp. 393-398 ◽  
Author(s):  
Thomas M. Parkinson ◽  
James A. Olson
2008 ◽  
Vol 3 (2) ◽  
pp. 84-91 ◽  
Author(s):  
I. Nilsson ◽  
T. Svenberg ◽  
B. Wallin ◽  
G. Hedenborg ◽  
P. M. Hellström

1968 ◽  
Vol 22 (2) ◽  
pp. 237-246 ◽  
Author(s):  
Aileen M. Lennox ◽  
A. K. Lough ◽  
G. A. Garton

1. Total lipids were extracted from digesta obtained from the rumen, abomasum and upper small intestine (jejunum) of each of four slaughtered sheep. The lipids were fractionated into unesterified fatty acids, neutral lipids and phospholipids and the proportional contribution of each fraction to the total fatty acids was determined.2. The contribution made by phospholipids to the total fatty acids in the digesta showed a marked increase in the samples from the small intestine compared with those from the rumen and abomasum. This increase was apparently due to the presence of biliary phospholipids.3. Total lipids and conjugated bile acids were extracted from sheep bile, the lipids were fractionated and their fatty-acid composition was determined. Phospholipids predominated and these consisted mainly of phosphatidylcholine, together with some lysophosphatidylcholine.4. Both phospholipids contained significant amounts of unsaturated C18 components which could account, at least in part, for the previously reported increament to the proportion of these acids in the digesta when it enters the upper jejunum.5. The overall fatty acid compositions of the two biliary phospholipids were very similar and, in common with other naturally occurring phosphatidylcholines, the fatty acids present in position 2 of the phosphatidylcholine of bile were found to consist almost entirely of unsaturated components.6. Total lipids and conjugated bile acids were extracted from samples of digesta obtained from three sheep with cannulas in different positions in the jejunum. Analysis of the lipids indicated that biliary phospholipids, in particular phosphatidylcholine, underwent progressive hydrolysis in the intestinal lumen.7. The distribution of conjugated bile acids, unesterified fatty acids and phospholipids between the solid (particulate) and liquid (micellar) phases of the intestinal digesta was determined. These chyme constituents were, for the most part, associated with the particulate matter and thus, at any given time, it appears that only a small fraction of the total fatty acids is available for absorption in micellar form. It is suggested that the micellar solubilization of fatty acids may be facilitated by the presence of lysophosphatidylcholine.


1971 ◽  
Vol 26 (2) ◽  
pp. 123-134 ◽  
Author(s):  
D. E. Beever ◽  
D. J. Thomson ◽  
E. Pfeffer ◽  
D. G. Armstrong

1. The effect of drying and ensiling ryegrass on the site of digestion of the energy andcarbohydrate fractions was studied in sheep fitted with rumen cannulas and re-entrant can-nulas in the proximal duodenum and terminal ileum.2. The sheep were given fresh (frozen) grass, dried grass, wilted and unwilted silage pre-pared from herbage harvested from the same sward. The grass diets were offered twice dailyto each animal and paper impregnated with chromium sesquioxide was administered twicedaily into the rumen. Twenty-four hour collections of duodenal and ileal digesta, adjusted togive 100 yo recovery of Cr2O3, were analysed to determine the extent of digestion in the fore-stomachs, the small intestine and the caecum and colon.3. Total digestibility of the gross energy was similar for the fresh grass, dried grass andwilted silage diets (67·4,68·1 and67·5 %)but higher for the unwilted silage (72·0 %, P < 0·01).There was an increased flow of energy into the small intestine when the sheep were given driedgrass and unwilted silage. The proportion of the apparently digested energy lost within thesmall intestine was greater when the dried grass was given (302 yo) than when the fresh grasswas given (23·6 yo).4. Drying or ensiling of wilted material affected digestion neither in the entire alimentarytract nor in the different sections of the tract, of some carbohydrate fractions. About 97 yo ofthe digested water-soluble carbohydrate, over 90 yo of the digested cellulose and over 70 yo ofthe digested hemicellulose were digested before reaching the small intestine. The increasedamount of energy entering the duodenum of the sheep given the dried grass was notaccounted for by changes in the fate of these carbohydrate fractions in the digestive tract. Withunwilted silage, digestibilities of the cellulose and hemicellulose fractions were higher, andlower proportions of the digested carbohydrates were lost before the small intestine.


2004 ◽  
Vol 287 (6) ◽  
pp. L1145-L1153 ◽  
Author(s):  
Kaushik Nag ◽  
Karina Rodriguez-Capote ◽  
Amiya Kumar Panda ◽  
Laura Frederick ◽  
Stephen A. Hearn ◽  
...  

C-reactive protein (CRP) and surfactant protein A (SP-A) are phosphatidylcholine (PC) binding proteins that function in the innate host defense system. We examined the effects of CRP and SP-A on the surface activity of bovine lipid extract surfactant (BLES), a clinically applied modified natural surfactant. CRP inhibited BLES adsorption to form a surface-active film and the film's ability to lower surface tension (γ) to low values near 0 mN/m during surface area reduction. The inhibitory effects of CRP were reversed by phosphorylcholine, a water-soluble CRP ligand. SP-A enhanced BLES adsorption and its ability to lower γ to low values. Small amounts of SP-A blocked the inhibitory effects of CRP. Electron microscopy showed CRP has little effect on the lipid structure of BLES. SP-A altered BLES multilamellar vesicular structure by generating large, loose bilayer structures that were separated by a fuzzy amorphous material, likely SP-A. These studies indicate that although SP-A and CRP both bind PC, there is a difference in the manner in which they interact with surface films.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Douglas de Britto ◽  
Rejane Celi Goy ◽  
Sergio Paulo Campana Filho ◽  
Odilio B. G. Assis

Recently, increasing attention has been paid to water-soluble derivatives of chitosan at its applications. The chemical characteristics and the antimicrobial properties of these salts can play significant role in pharmacological and food areas mainly as carriers for drug delivery systems and as antimicrobial packaging materials. In the current paper, a historical sequence of the main preparative methods, physical chemistry aspects, and antimicrobial activity of chitosan quaternized derivatives are presented and briefly discussed. In general, the results indicated that the quaternary derivatives had better inhibitory effects than the unmodified chitosan.


2020 ◽  
Vol 159 ◽  
pp. 455-460 ◽  
Author(s):  
Limei Zhou ◽  
Pengcheng Ma ◽  
Ming Shuai ◽  
Jian Huang ◽  
Chengxin Sun ◽  
...  

Antioxidants ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 385 ◽  
Author(s):  
Yusuke Yamaguchi ◽  
Ryosuke Honma ◽  
Tomoaki Yazaki ◽  
Takeshi Shibuya ◽  
Tomoya Sakaguchi ◽  
...  

S-Allyl-l-cysteine sulfoxide (ACSO) is a precursor of garlic-odor compounds like diallyl disulfide (DADS) and diallyl trisulfide (DATS) known as bioactive components. ACSO has suitable properties as a food material because it is water-soluble, odorless, tasteless and rich in bulbs of fresh garlic. The present study was conducted to examine the preventive effect of ACSO on hepatic injury induced by CCl4 in rats. ACSO, its analogs and garlic-odor compounds were each orally administered via gavage for five consecutive days before inducing hepatic injury. Then, biomarkers for hepatic injury and antioxidative state were measured. Furthermore, we evaluated the absorption and metabolism of ACSO in the small intestine of rats and NF-E2-related factor 2 (Nrf2) nuclear translocation by ACSO using HepG2 cells. As a result, ACSO, DADS and DATS significantly suppressed the increases in biomarkers for hepatic injury such as the activities of aspartate transaminase (AST), alanine transaminase (ALT) and lactate dehydrogenase (LDH), and decreases in antioxidative potency such as glutathione (GSH) level and the activities of glutathione S-transferase (GST) and glutathione peroxidase (GPx). We also found ACSO was absorbed into the portal vein from the small intestine but partially metabolized to DADS probably in the small intestine. In in vitro study, ACSO induced Nrf2 nuclear translocation in HepG2 cells, which is recognized as an initial trigger to induce antioxidative and detoxifying enzymes. Taken together, orally administered ACSO probably reached the liver and induced antioxidative and detoxifying enzymes by Nrf2 nuclear translocation, resulting in prevention of hepatic injury. DADS produced by the metabolism of ACSO in the small intestine might also have contributed to the prevention of hepatic injury. These results suggest potential use of ACSO in functional foods that prevent hepatic injury and other diseases caused by reactive oxygen species (ROS).


1990 ◽  
Vol 259 (1) ◽  
pp. G78-G85 ◽  
Author(s):  
M. L. Siegle ◽  
H. R. Schmid ◽  
H. J. Ehrlein

In the present study, effects of ileal infusions of nutrients on motor patterns of the proximal small intestine and on gastric emptying were investigated in dogs. An acaloric meal was administered orally, and equicaloric loads of amino acids, oleate, and glucose were infused into the ileum at different doses (0.3, 0.6, and 0.9 kJ/min). The computerized analysis of motor patterns was focused on the differentiation between stationary and propagated contractions recorded by closely spaced extraluminal strain gauges. All three nutrients exerted inhibitory effects on gastric emptying and on contraction force and frequency of the proximal small intestine. Additionally, the propulsive motor pattern induced by the acaloric meal was modulated by reducing the number of contraction waves and their length of spread. All the effects were dose dependent. Among the three nutrients, glucose significantly changed motility at lower doses compared with amino acids and oleate. We conclude that in dogs the ileal brake mechanism is induced by all three nutrients and that it influences not only contraction force and frequency but also the motor patterns of the proximal small intestine.


Sign in / Sign up

Export Citation Format

Share Document