Deformation and ultimate properties of poly(butyl methacrylate) under uniaxial stretching over a broad temperature range around the glass-transition temperature

1987 ◽  
Vol 29 (8) ◽  
pp. 1872-1880 ◽  
Author(s):  
G.V. Vinogradov ◽  
V.Ye. Dreval ◽  
M.K. Kurbanaliyev ◽  
Ye.K. Borisenkova ◽  
M.P. Zabugina ◽  
...  
2018 ◽  
Vol 26 (2) ◽  
pp. 169-175
Author(s):  
Yaoqi Shi ◽  
Liang Wen ◽  
Zhong Xin

The crystallization activation energy (Δ E) of a polymer comprises the nucleation activation energy Δ F and the transport activation energy Δ E*. In this paper, the Δ E of poly (L-lactic acid) (PLLA) nucleated with nucleating agent p- tert-butylcalix[8]arene (tBC8) was calculated. The results showed that the Δ E of nucleated PLLA was 165.97 kJ/mol, which is higher than that of pure PLLA. The reason why Δ E of PLLA increased when incorporating nucleating agent was studied. The increment of glass transition temperature ( Tg) for nucleated PLLA revealed that the polymer chain mobility was restricted by tBC8, which was considered as the reason for the increase of Δ E*. Further, polyethylene glycol (PEG) was added to improve the chain mobility, thus eliminated the variation of the transport activation energy Δ E* caused by tBC8. Then the effect of the increment of crystallization temperature range on the increase of Δ F was also taken into consideration. It was concluded that both decreasing the mobility of chain segments and increasing the crystallization temperature range caused an increase of Δ E for PLLA/tBC8.


1989 ◽  
Vol 68 (9) ◽  
pp. 1313-1315 ◽  
Author(s):  
C.W. Fairhurst ◽  
D.T. Hashinger ◽  
S.W. Twiggs

Porcelain-fused-to-metal restorations are fired several hundred degrees above the glass-transition temperature and cooled rapidly through the glass-transition temperature range. Thermal expansion data from room temperature to above the glass-transition temperature range are important for the thermal expansion of the porcelain to be matched to the alloy. The effect of heating rate during measurement of thermal expansion was determined for NBS SRM 710 glass and four commercial opaque and body porcelain products. Thermal expansion data were obtained at heating rates of from 3 to 30°C/min after the porcelain was cooled at the same rate. By use of the Moynihan equation (where Tg systematically increases in temperature with an increase in cooling/heating rate), the glass-transition temperatures (Tg) derived from these data were shown to be related to the heating rate.


1990 ◽  
Vol 215 ◽  
Author(s):  
G. D. Paiterson ◽  
P. K. Jue ◽  
J. R. Stevens

AbstractAn optically homogeneous sample of highly syndiotactic poly(n-butyl methacrylate) (PBMA) has been prepared. The glass transition temperature was observed to be Tg=55C. Measurements of the scattered intensity of the sample followed the expected behavior for a pure liquid above Tg. The intensity rose as the sample was cooled further towards the glass transition temperature for atactic PBMA. These results illuminate the importance of regions of different stereoisomers in methacrylate polymers. Measurements of the Rayleigh- Brillouin spectrum were carried out from -15 to 130 C. The ratio of the the central peak intensity to the Brillouin intensities at temperatures above Tg was consistent with a viscoelastic liquid and had a magnitude near 3. The Brillouin linewidth remained large near Tg. and decreased continuosly with no apparent change in slope in the glass transition region. The presence and importance of rapid motions in polymers near the glass transistion is demonstrated by these results. Slowly relaxing density fluctuations near Tg. were measured by photon correlation spectroscopy. Relaxation functions were obtained from 10−6 to 10 s. Average relaxation times <τ> were obtained from the integral of the relaxation function and were found to follow the relation <τ>=Aexp(B/(T−T0)), where for our sample B=2940K and T0=273K. The observed relaxation function decayed over a wider time range as the sample was cooled. Quantitative analysis of this effect using the Williams-Watts empirical function yielded a decrease in β from 0.35 at 90 C to 0.18 at 65 C. The relaxation functions were also analyzed to give a distribution of relaxation rates. The observed distributions were bimodal at 70 and 80 C. The two features behaved in a manner consistent with the primary and secondary relaxations observed for methacrylate polymers by other techniques.


2017 ◽  
Vol 14 (1) ◽  
pp. 31-36 ◽  
Author(s):  
Rami Omari ◽  
Gilbert Ayuk

The glass transition temperature and the surface dynamics of poly (butyl methacrylate) (PBMA) films have been studied using a phase-modulated ellipsometer equipped with a home-built sample cell with temperature controller. Experiments were performed for a range of temperatures, both above and below the glass transition temperature (Tg). In our study the glass transition temperature was obtained by plotting the ellipticity, as a function of temperature using the data from the ellipsometric cooling scan. the correlation functions governing the fluctuations were calculated at each temperature from the time-dependent fluctuations in film thickness as a function of temperature using ellipsometry data collected at 50 Hz frequency. The results indicate that at temperatures well above Tg, the correlation functions obey a simple exponential decay. However, as Tg is approached, the correlation functions are best fitted with a stretched exponential relation, indicating a broad distribution of relaxation times. In addition, the temperature dependence of surface relaxation process has been found to be much weaker compared to the bulk relaxation.


Sign in / Sign up

Export Citation Format

Share Document