Coseismic Uplift of Holocene Marine Terraces in the Pakarae River Area, Eastern North Island, New Zealand

1991 ◽  
Vol 35 (3-Part1) ◽  
pp. 331-346 ◽  
Author(s):  
Yoko Ota ◽  
Alan G. Hull ◽  
Kelvin R. Berryman

AbstractHolocene marine terraces along 15 km of the northeastern coast of North Island record episodic tectonic uplift. A maximum of seven terraces are arranged in staircase fashion and lie about 20 km above the subduction interface between the Pacific and Australian plates. The highest (T1) corresponds with the maximum of the Holocene marine transgression about 6700 14C yr B.P. Younger terraces are marine abrasion platforms overlain by thin beach deposits. Radiocarbon ages of marine shells from beach deposits indicate that uplift above marine conditions occurred ca. 6700(T1), 5500(T2), 3900(T3), 2500(4), 1600(T5), 1000(T6), and slightly younger than 600(T7) yr B.P. Uplift probably occurred coseismically. The maximum late Holocene uplift rate in the study area is 8 mm/yr. Altitudinal distribution of terraces suggests deformation exists as a ca. 20-km elongate dome, broken at the southern end by the Pakarae fault, which trends across the dome. Rupture on this fault has accompanied the growth of the dome but is not responsible for it. Bathymetric profiling suggests that an active fault, parallel to and about 5 km offshore, is probably responsible for the episodic coastal uplift.

2017 ◽  
Author(s):  
Imogen M. Browne ◽  
Christopher M. Moy ◽  
Christina R. Riesselman ◽  
Helen L. Neil ◽  
Lorelei G. Curtin ◽  
...  

Abstract. The Southern Hemisphere westerly winds (SHWW) play a major role in controlling wind-driven upwelling of Circumpolar Deep Water (CDW) and outgassing of CO2 in the Southern Ocean on interannual to glacial-interglacial timescales. Despite their significance in the global carbon cycle, our understanding of millennial-scale changes in the strength and latitudinal position of the westerlies during the Holocene (especially since 5000 yr BP) is limited by a scarcity of paleoclimate records from comparable latitudes. Here, we reconstruct middle to late Holocene variability in the SHWW using a fjord sediment core collected from the subantarctic Auckland Islands (51° S, 166° E), located in the modern centre of the westerly wind belt. Drainage basin response to variability in the strength of the SHWW at this latitude is reconstructed from downcore variations in magnetic susceptibility (MS) and bulk organic δ13C and atomic C/N, which monitor influxes of lithogenous and terrestrial vs marine organic matter, respectively. The hydrographic response to SHWW variability is reconstructed using benthic foraminifer δ18O and δ13C, both of which are influenced by the isotopic composition of shelf water masses entering the fjord. Using these data, we provide marine and terrestrial-based evidence for increased wind strength from ~ 1600–900 yr BP at subantarctic latitudes that is broadly consistent with previous studies of vegetation response to climate at the Auckland Islands. Comparison with a SHWW reconstruction using similar proxies from Fiordland suggests a northward migration of the SHWW over New Zealand at the beginning of the Little Ice Age (LIA). Comparison with paleoclimate and paleoceanographic records from southern South America and the western Antarctic Peninsula indicates a late Holocene strengthening of the SHWW after ~ 1600 yr BP that appears to be broadly symmetrical across the Pacific basin, although our reconstruction suggests that this symmetry breaks down during the LIA. Contemporaneous increases in SHWW at localities either side of the Pacific in the late Holocene are likely controlled atmospheric teleconnections between the low and high latitudes and by variability in the Southern Annular Mode (SAM) and El Niño Southern Oscillation (ENSO).


2021 ◽  
Author(s):  
◽  
Dee Ninis

<p>At the southern Hikurangi margin, the subduction interface between the Australian and Pacific plates, beneath the southern North Island of New Zealand, is ‘locked’. It has previously been estimated that sudden slip on this locked portion of the interface could result in a subduction zone or ‘megathrust’ earthquake of Mw 8.0-8.5 or larger. Historically, however, no significant (>Mw 7.2) subduction interface earthquake has occurred at the southern Hikurangi margin, and the hazard from subduction earthquakes to this region, which includes New Zealand’s capital city of Wellington, remains largely unknown.  Patterns of uplift at active margins can provide insight into subduction processes, including megathrust earthquakes. With the objectives to i) contribute to the understanding of partitioning of margin-parallel plate motion on to upper plate faults, and ii) provide insight into the relationship of permanent vertical deformation to subduction processes at the southern end of the Hikurangi margin, I investigate flights of late Pleistocene fluvial and marine terraces preserved across the lower North Island. Such geomorphic features, when constrained by numerical dating, provide a valuable set of data with which to quantify tectonic deformation - be they locally offset by a fault, or collectively uplifted across the margin.  Fault-offset fluvial terraces along the Hutt River, near Wellington, record dextral slip for the southern part of the Wellington Fault. From re-evaluated fault displacement measurements and new Optically Stimulated Luminescence (OSL) data, I estimate an average slip rate of 6.3 ± 1.9/1.2 mm/yr (2σ) during the last ~100 ka. However, slip on the Wellington Fault has not been steady throughout this time. During the Holocene, there was a phase of heightened ground rupture activity between ~8 and 10 ka, a period of relative quiescence between ~4.5 and 8 ka, and another period of heightened activity during the last ≤ 4.5 ka. Moreover, these results agree with independent paleoseismological evidence from other sites along the Wellington Fault for the timing of ground rupture events. The time-varying activity observed on the Wellington Fault may be regulated by stress interactions with other nearby upper plate active faults.  Net tectonic uplift of the southern Hikurangi margin is recorded by ancient emergent shore platforms preserved along the south coast of the North Island. I provide a new evaluation of the distribution and age of the Pleistocene marine terraces. Shore platform altitudes are accurately surveyed for the first time using Global Navigational Satellite Systems (GNSS). From these data I have determine the shore platform attitudes where they are preserved along the coast. The terraces are also dated, most for the first time, using OSL techniques. The most extensive Pleistocene terraces formed during Marine Isotope Stages (MIS) 5a, 5c, 5e and 7a. Because the ancient shorelines are now obscured by coverbed deposits, I use shore platform attitudes to reconstruct strandline elevations. These strandline elevations, corrected for sea level during their formative highstands, have been used to quantify rates of uplift across the southern Hikurangi margin.  In the forearc region of the Hikurangi margin, within ~70 km of the trough, uplift observed on the marine terraces along the Palliser Bay coast monotonically decreases away from the trough. The highest uplift rate of 1.7 ± 0.1 mm/yr is observed at the easternmost preserved terrace, near Cape Palliser, about 40 km from Hikurangi Trough. Further to the west, at Lake Ferry, uplift is 0.8 ± 0.1 mm/yr. The lowest rate of uplift, 0.2 ± 0.1 mm/yr, is observed at Wharekauhau, the westernmost marine terrace preserved on the Palliser Bay coast. Overall, the terraces are tilted towards the west, away from the trough, with older terraces exhibiting the most tilting. This long-wavelength pattern of uplift suggests that, in this forearc region of the margin, deep-seated processes, most likely subduction of a buoyant slab in combination with megathrust earthquakes, are the main contributors to permanent vertical deformation.  West of Palliser Bay, at a distance of >70 km from the Hikurangi Trough, vertical offsets on the marine terraces are evident across upper plate faults, most notably the Wairarapa and Ohariu Faults. The uplift rate at Baring Head, west and on the upthrown side of the Wairarapa Fault, is as much as 1.6 ± 0.1 mm/yr. At Tongue Point, where the Ohariu Fault offsets the marine terraces preserved there, uplift calculated from the western, upthrown side of the fault is 0.6 ± 0.1 mm/yr. These uplift rates suggest that, in the Axial Ranges, in addition to sediment underplating, movement on the major active upper plate faults also contributes to rock uplift.</p>


2021 ◽  
Author(s):  
◽  
Dee Ninis

<p>At the southern Hikurangi margin, the subduction interface between the Australian and Pacific plates, beneath the southern North Island of New Zealand, is ‘locked’. It has previously been estimated that sudden slip on this locked portion of the interface could result in a subduction zone or ‘megathrust’ earthquake of Mw 8.0-8.5 or larger. Historically, however, no significant (>Mw 7.2) subduction interface earthquake has occurred at the southern Hikurangi margin, and the hazard from subduction earthquakes to this region, which includes New Zealand’s capital city of Wellington, remains largely unknown.  Patterns of uplift at active margins can provide insight into subduction processes, including megathrust earthquakes. With the objectives to i) contribute to the understanding of partitioning of margin-parallel plate motion on to upper plate faults, and ii) provide insight into the relationship of permanent vertical deformation to subduction processes at the southern end of the Hikurangi margin, I investigate flights of late Pleistocene fluvial and marine terraces preserved across the lower North Island. Such geomorphic features, when constrained by numerical dating, provide a valuable set of data with which to quantify tectonic deformation - be they locally offset by a fault, or collectively uplifted across the margin.  Fault-offset fluvial terraces along the Hutt River, near Wellington, record dextral slip for the southern part of the Wellington Fault. From re-evaluated fault displacement measurements and new Optically Stimulated Luminescence (OSL) data, I estimate an average slip rate of 6.3 ± 1.9/1.2 mm/yr (2σ) during the last ~100 ka. However, slip on the Wellington Fault has not been steady throughout this time. During the Holocene, there was a phase of heightened ground rupture activity between ~8 and 10 ka, a period of relative quiescence between ~4.5 and 8 ka, and another period of heightened activity during the last ≤ 4.5 ka. Moreover, these results agree with independent paleoseismological evidence from other sites along the Wellington Fault for the timing of ground rupture events. The time-varying activity observed on the Wellington Fault may be regulated by stress interactions with other nearby upper plate active faults.  Net tectonic uplift of the southern Hikurangi margin is recorded by ancient emergent shore platforms preserved along the south coast of the North Island. I provide a new evaluation of the distribution and age of the Pleistocene marine terraces. Shore platform altitudes are accurately surveyed for the first time using Global Navigational Satellite Systems (GNSS). From these data I have determine the shore platform attitudes where they are preserved along the coast. The terraces are also dated, most for the first time, using OSL techniques. The most extensive Pleistocene terraces formed during Marine Isotope Stages (MIS) 5a, 5c, 5e and 7a. Because the ancient shorelines are now obscured by coverbed deposits, I use shore platform attitudes to reconstruct strandline elevations. These strandline elevations, corrected for sea level during their formative highstands, have been used to quantify rates of uplift across the southern Hikurangi margin.  In the forearc region of the Hikurangi margin, within ~70 km of the trough, uplift observed on the marine terraces along the Palliser Bay coast monotonically decreases away from the trough. The highest uplift rate of 1.7 ± 0.1 mm/yr is observed at the easternmost preserved terrace, near Cape Palliser, about 40 km from Hikurangi Trough. Further to the west, at Lake Ferry, uplift is 0.8 ± 0.1 mm/yr. The lowest rate of uplift, 0.2 ± 0.1 mm/yr, is observed at Wharekauhau, the westernmost marine terrace preserved on the Palliser Bay coast. Overall, the terraces are tilted towards the west, away from the trough, with older terraces exhibiting the most tilting. This long-wavelength pattern of uplift suggests that, in this forearc region of the margin, deep-seated processes, most likely subduction of a buoyant slab in combination with megathrust earthquakes, are the main contributors to permanent vertical deformation.  West of Palliser Bay, at a distance of >70 km from the Hikurangi Trough, vertical offsets on the marine terraces are evident across upper plate faults, most notably the Wairarapa and Ohariu Faults. The uplift rate at Baring Head, west and on the upthrown side of the Wairarapa Fault, is as much as 1.6 ± 0.1 mm/yr. At Tongue Point, where the Ohariu Fault offsets the marine terraces preserved there, uplift calculated from the western, upthrown side of the fault is 0.6 ± 0.1 mm/yr. These uplift rates suggest that, in the Axial Ranges, in addition to sediment underplating, movement on the major active upper plate faults also contributes to rock uplift.</p>


2022 ◽  
Vol 10 (1) ◽  
pp. 99
Author(s):  
Efthimios Karymbalis ◽  
Konstantinos Tsanakas ◽  
Ioannis Tsodoulos ◽  
Kalliopi Gaki-Papanastassiou ◽  
Dimitrios Papanastassiou ◽  
...  

Marine terraces are geomorphic markers largely used to estimate past sea-level positions and surface deformation rates in studies focused on climate and tectonic processes worldwide. This paper aims to investigate the role of tectonic processes in the late Quaternary evolution of the coastal landscape of the broader Neapolis area by assessing long-term vertical deformation rates. To document and estimate coastal uplift, marine terraces are used in conjunction with Optically Stimulated Luminescence (OSL) dating and correlation to late Quaternary eustatic sea-level variations. The study area is located in SE Peloponnese in a tectonically active region. Geodynamic processes in the area are related to the active subduction of the African lithosphere beneath the Eurasian plate. A series of 10 well preserved uplifted marine terraces with inner edges ranging in elevation from 8 ± 2 m to 192 ± 2 m above m.s.l. have been documented, indicating a significant coastal uplift of the study area. Marine terraces have been identified and mapped using topographic maps (at a scale of 1:5000), aerial photographs, and a 2 m resolution Digital Elevation Model (DEM), supported by extensive field observations. OSL dating of selected samples from two of the terraces allowed us to correlate them with late Pleistocene Marine Isotope Stage (MIS) sea-level highstands and to estimate the long-term uplift rate. Based on the findings of the above approach, a long-term uplift rate of 0.36 ± 0.11 mm a−1 over the last 401 ± 10 ka has been suggested for the study area. The spatially uniform uplift of the broader Neapolis area is driven by the active subduction of the African lithosphere beneath the Eurasian plate since the study area is situated very close (~90 km) to the active margin of the Hellenic subduction zone.


2017 ◽  
Vol 13 (10) ◽  
pp. 1301-1322 ◽  
Author(s):  
Imogen M. Browne ◽  
Christopher M. Moy ◽  
Christina R. Riesselman ◽  
Helen L. Neil ◽  
Lorelei G. Curtin ◽  
...  

Abstract. The Southern Hemisphere westerly winds (SHWWs) play a major role in controlling wind-driven upwelling of Circumpolar Deep Water (CDW) and outgassing of CO2 in the Southern Ocean, on interannual to glacial–interglacial timescales. Despite their significance in the global carbon cycle, our understanding of millennial- and centennial-scale changes in the strength and latitudinal position of the westerlies during the Holocene (especially since 5000 yr BP) is limited by a scarcity of palaeoclimate records from comparable latitudes. Here, we reconstruct middle to late Holocene SHWW variability using a fjord sediment core collected from the subantarctic Auckland Islands (51° S, 166° E), located in the modern centre of the westerly wind belt. Changes in drainage basin response to variability in the strength of the SHWW at this latitude are interpreted from downcore variations in magnetic susceptibility (MS) and bulk organic δ13C and atomic C ∕ N, which monitor influxes of lithogenous and terrestrial vs. marine organic matter, respectively. The fjord water column response to SHWW variability is evaluated using benthic foraminifer δ18O and δ13C, both of which are influenced by the isotopic composition of shelf water masses entering the fjord. Using these data, we provide marine and terrestrial-based evidence for increased wind strength from  ∼  1600 to 900 yr BP at subantarctic latitudes that is broadly consistent with previous studies of climate-driven vegetation change at the Auckland Islands. Comparison with a SHWW reconstruction using similar proxies from Fiordland suggests a northward migration of the SHWW over New Zealand during the first half of the last millennium. Comparison with palaeoclimate and palaeoceanographic records from southern South America and West Antarctica indicates a late Holocene strengthening of the SHWW after  ∼  1600 yr BP that appears to be broadly symmetrical across the Pacific Basin. Contemporaneous increases in SHWW at localities on either side of the Pacific in the late Holocene are likely controlled atmospheric teleconnections between the low and high latitudes, and by variability in the Southern Annular Mode and El Niño–Southern Oscillation.


2014 ◽  
Vol 41 (1) ◽  
pp. 1-16 ◽  
Author(s):  
B. J. Gill

In December 1884 Charles Francis Adams (1857–1893) left Illinois, USA, by train for San Francisco and crossed the Pacific by ship to work as taxidermist at Auckland Museum, New Zealand, until February 1887. He then went to Borneo via several New Zealand ports, Melbourne and Batavia (Jakarta). This paper concerns a diary by Adams that gives a daily account of his trip to Auckland and the first six months of his employment (from January to July 1885). In this period Adams set up a workshop and diligently prepared specimens (at least 124 birds, fish, reptiles and marine invertebrates). The diary continues with three reports of trips Adams made from Auckland to Cuvier Island (November 1886), Karewa Island (December 1886) and White Island (date not stated), which are important early descriptive accounts of these small offshore islands. Events after leaving Auckland are covered discontinuously and the diary ends with part of the ship's passage through the Dutch East Indies (Indonesia), apparently in April 1887. Adams's diary is important in giving a detailed account of a taxidermist's working life, and in helping to document the early years of Auckland Museum's occupation of the Princes Street building.


2018 ◽  
Vol 21 (2) ◽  
pp. 89-95
Author(s):  
Vili Nosa ◽  
Kotalo Leau ◽  
Natalie Walker

ABSTRACT Introduction: Pacific people in New Zealand have one of the highest rates of smoking.  Cytisine is a plant-based alkaloid that has proven efficacy, effectiveness and safety compared to a placebo and nicotine replacement therapy (NRT) for smoking cessation.  Cytisine, like varenicline, is a partial agonist of nicotinic acetylcholine receptors, and blocks the rewarding effects of nicotine. Cytisine is naturally found in some plants in the Pacific region, and so may appeal to Pacific smokers wanting to quit. This paper investigates the acceptability of cytisine as a smoking cessation product for Pacific smokers in New Zealand, using a qualitative study design. Methods: In December 2015, advertisements and snowball sampling was used to recruit four Pacific smokers and three Pacific smoking cessation specialists in Auckland, New Zealand. Semi-structured interviews where undertaken, whereby participants were asked about motivations to quit and their views on smoking cessation products, including cytisine (which is currently unavailable in New Zealand). Interviews were recorded and transcribed verbatim, with thematic analysis conducted manually. Findings: Pacific smokers reported wanting to quit for loved ones and family, but did not find currently available smoking cessation products effective. Almost all participants had not previously heard of cytisine, but many of the Pacific smokers were keen to try it. Participants identified with cytisine on a cultural basis (given its natural status), but noted that their use would be determined by the efficacy of the medicine, its cost, side-effects, and accessibility. They were particularly interested in cytisine being made available in liquid form, which could be added to a “smoothie” or drunk as a “traditional tea”.  Participants thought cytisine should be promoted in a culturally-appropriate way, with packaging and advertising designed to appeal to Pacific smokers. Conclusions: Cytisine is more acceptable to Pacific smokers than other smoking cessation products, because of their cultural practices of traditional medicine and the natural product status of cytisine.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Amio Matenga-Ikihele ◽  
Judith McCool ◽  
Rosie Dobson ◽  
Fuafiva Fa’alau ◽  
Robyn Whittaker

Abstract Background Pacific people living in New Zealand, Australia, United States, and the Pacific region continue to experience a disproportionately high burden of long-term conditions, making culturally contextualised behaviour change interventions a priority. The primary aim of this study was to describe the characteristics of behaviour change interventions designed to improve health and effect health behaviour change among Pacific people. Methods Electronic searches were carried out on OVID Medline, PsycINFO, PubMed, Embase and SCOPUS databases (initial search January 2019 and updated in January 2020) for studies describing an intervention designed to change health behaviour(s) among Pacific people. Titles and abstracts of 5699 papers were screened; 201 papers were then independently assessed. A review of full text was carried out by three of the authors resulting in 208 being included in the final review. Twenty-seven studies were included, published in six countries between 1996 and 2020. Results Important characteristics in the interventions included meaningful partnerships with Pacific communities using community-based participatory research and ensuring interventions were culturally anchored and centred on collectivism using family or social support. Most interventions used social cognitive theory, followed by popular behaviour change techniques instruction on how to perform a behaviour and social support (unspecified). Negotiating the spaces between Eurocentric behaviour change constructs and Pacific worldviews was simplified using Pacific facilitators and talanoa. This relational approach provided an essential link between academia and Pacific communities. Conclusions This systematic search and narrative synthesis provides new and important insights into potential elements and components when designing behaviour change interventions for Pacific people. The paucity of literature available outside of the United States highlights further research is required to reflect Pacific communities living in New Zealand, Australia, and the Pacific region. Future research needs to invest in building research capacity within Pacific communities, centering self-determining research agendas and findings to be led and owned by Pacific communities.


2020 ◽  
Vol 29 ◽  
Author(s):  
G. Newton-Howes ◽  
M. K. Savage ◽  
R. Arnold ◽  
T. Hasegawa ◽  
V. Staggs ◽  
...  

Abstract Aims The use of mechanical restraint is a challenging area for psychiatry. Although mechanical restraint remains accepted as standard practice in some regions, there are ethical, legal and medical reasons to minimise or abolish its use. These concerns have intensified following the Convention on the Rights of Persons with Disabilities. Despite national policies to reduce use, the reporting of mechanical restraint has been poor, hampering a reasonable understanding of the epidemiology of restraint. This paper aims to develop a consistent measure of mechanical restraint and compare the measure within and across countries in the Pacific Rim. Methods We used the publicly available data from four Pacific Rim countries (Australia, New Zealand, Japan and the United States) to compare and contrast the reported rates of mechanical restraint. Summary measures were computed so as to enable international comparisons. Variation within each jurisdiction was also analysed. Results International rates of mechanical restraint in 2017 varied from 0.03 (New Zealand) to 98.9 (Japan) restraint events per million population per day, a variation greater than 3000-fold. Restraint in Australia (0.17 events per million) and the United States (0.37 events per million) fell between these two extremes. Variation as measured by restraint events per 1000 bed-days was less extreme but still substantial. Within all four countries there was also significant variation in restraint across districts. Variation across time did not show a steady reduction in restraint in any country during the period for which data were available (starting from 2003 at the earliest). Conclusions Policies to reduce or abolish mechanical restraint do not appear to be effecting change. It is improbable that the variation in restraint within the four examined Pacific Rim countries is accountable for by psychopathology. Greater efforts at reporting, monitoring and carrying out interventions to achieve the stated aim of reducing restraint are urgently needed.


Sign in / Sign up

Export Citation Format

Share Document