Energy spectrum in the inversion layer of a disordered oxide-semiconductor interface

1987 ◽  
Vol 179 (2-3) ◽  
pp. 527-539
Author(s):  
C. Papatriantafillou ◽  
A. Papakitsos ◽  
C. Paraskevaidis
1987 ◽  
Vol 179 (3) ◽  
pp. A20
Author(s):  
C. Papatriantafillou ◽  
A. Papakitsos ◽  
C. Paraskevaidis

2013 ◽  
Vol 827 ◽  
pp. 282-286
Author(s):  
Gang Chen ◽  
Song Bai ◽  
Run Hua Huang ◽  
Yong Hong Tao ◽  
Ao Liu

SiC devices have excellent properties such as ultra low loss, high withstand voltage, large capacity, high frequency, and high temperature operation compared with Si devices. The SiC JFET is expected to be appropriate for the power device because a JFET has no oxide-semiconductor interface in the channel region and does not use the low mobility SiC MOSFET inversion layer as a channel. Forward I-V up to 4A for SiC VJFET, Gate voltage from 2V to 3.5V by step 0.5V. Reverse I-V characteristics up to 4500V (VG=-8V) for SiC VJFET, Gate voltage from-4V to-8V by step-2V. Turn-off characteristics are studied and fast turn-off time of 136ns at room temperature under DC voltage of 600V is successfully demonstrated.


1987 ◽  
Vol 65 (8) ◽  
pp. 995-998
Author(s):  
N. G. Tarr

It is shown that the accuracy of the charge-sheet model for the long-channel metal-oxide-semiconductor field-effect transistor can be improved by allowing for the small potential drop across the inversion layer, and by using a more accurate analytic approximation for the charge stored in the depletion region.


2010 ◽  
Vol 7 (2) ◽  
pp. 185-193 ◽  
Author(s):  
Amit Chaudhry ◽  
Nath Roy

In this paper, an analytical model has been developed to study inversion layer quantization in nanoscale Metal Oxide Semiconductor Field Effect Oxide p-(MOSFET). n-MOSFETs have been studied using the variation approach and the p-MOSFETs have been studied using the triangular well approach. The inversion charge density and gate capacitance analysis for both types of transistors has been done. There is a marked decrease in the inversion charge density and the capacitance of the p-MOSFET as compared to n-MOSFETs. The results are compared with the numerical results showing good agreement.


2020 ◽  
Vol 64 ◽  
pp. 115-122
Author(s):  
P. Vimala ◽  
N.R. Nithin Kumar

The paper introduces an analytical model for gate all around (GAA) or Surrounding Gate Metal Oxide Semiconductor Field Effect Transistor (SG-MOSFET) inclusive of quantum mechanical effects. The classical oxide capacitance is replaced by the capacitance incorporating quantum effects by including the centroid parameter. The quantum variant of inversion charge distribution function, inversion layer capacitance, drain current, and transconductance expressions are modeled by employing this model. The established analytical model results agree with the simulated results, verifying these models' validity and providing theoretical supports for designing and applying these novel devices.


Sign in / Sign up

Export Citation Format

Share Document