The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression

Cell ◽  
1993 ◽  
Vol 74 (2) ◽  
pp. 281-289 ◽  
Author(s):  
Peter Jeppesen ◽  
Bryan M. Turner
1980 ◽  
Vol 6 (3) ◽  
pp. 309-323 ◽  
Author(s):  
Brenda Kahan ◽  
Robert DeMars

2019 ◽  
Vol 18 (2) ◽  
pp. 21-26
Author(s):  
E. A. Shestakova ◽  
T. A. Bogush

Introduction . Inactive X chromosome (Xi) is associated with noncoding XIST RNA, series of proteins and contains multiple epigenetic modifications that altogether determine a silence of the most of X-linked genes. Recently the data were obtained that tumor suppressor BRCA1 is also associated with Xi. The purpose of this study was to reveal the colocalization of BRCA1 and XIST RNA and precise spatial organization on Xi with the high resolution of confocal microscopy.Materials and methods . The object of the study is IMR90hTERT diploid immortalized fibroblast cell line. For BRCA1 and XIST RNA colocalization analysis on Xi the method of fluorescent hybridization in situ associated with immunofluorescent cell staining (immunoFISH) and confocal microscopy were used. For BRCA1 and heterochromatin protein-1 colocalization study the method of double immunofluorescent staining and common fluorescent microscopy were applied. Results . The study using confocal fluorescent microscopy with higher resolution has demonstrated at first the colocalization of BRCA1 with XIST RNA region of Xi revealed with XIST RNA probes and with replicating Xi and autosomes revealed with BrdU in late S-phase of cell cycle. Altogether, the data obtained suggest the involvement of BRCA1 in the inhibition of gene expression on Xi due to the regulation of XIST RNA association with Xi. Moreover, according to the results of confocal microscopy, BRCA1 also colocalizes with replicating Xi and autosomes revealed with BrdU in late S-phase of cell cycle. This indicates a possible involvement of this protein in the replication of pericentromeric repeats in cellular chromosomes. Colocalization of BRCA1 with heterochromatin protein-1α presented in pericentromeric regions of all chromosomes supports this suggestion.Conclusions . Altogether, the data obtained in this study suggest the involvement of BRCA1 in the inhibition of gene expression on Xi due to the association with noncoding inhibiting XIST RNA and in replication of heterochromatin regions. 


2003 ◽  
Vol 23 (2) ◽  
pp. 629-635 ◽  
Author(s):  
John R. Rohde ◽  
Maria E. Cardenas

ABSTRACT The Tor pathway mediates cell growth in response to nutrient availability, in part by inducing ribosomal protein (RP) gene expression via an unknown mechanism. Expression of RP genes coincides with recruitment of the Esa1 histone acetylase to RP gene promoters. We show that inhibition of Tor with rapamycin releases Esa1 from RP gene promoters and leads to histone H4 deacetylation without affecting promoter occupancy by Rap1 and Abf1. Genetic and biochemical evidence identifies Rpd3 as the major histone deacetylase responsible for reversing histone H4 acetylation at RP gene promoters in response to Tor inhibition by rapamycin or nutrient limitation. Our results illustrate that the Tor pathway links nutrient sensing with histone acetylation to control RP gene expression and cell growth.


2000 ◽  
Vol 20 (18) ◽  
pp. 6891-6903 ◽  
Author(s):  
Kazuhiro Ito ◽  
Peter J. Barnes ◽  
Ian M. Adcock

ABSTRACT We have investigated the ability of dexamethasone to regulate interleukin-1β (IL-1β)-induced gene expression, histone acetyltransferase (HAT) and histone deacetylase (HDAC) activity. Low concentrations of dexamethasone (10−10 M) repress IL-1β-stimulated granulocyte-macrophage colony-stimulating factor (GM-CSF) expression and fail to stimulate secretory leukocyte proteinase inhibitor expression. Dexamethasone (10−7 M) and IL-1β (1 ng/ml) both stimulated HAT activity but showed a different pattern of histone H4 acetylation. Dexamethasone targeted lysines K5 and K16, whereas IL-1β targeted K8 and K12. Low concentrations of dexamethasone (10−10 M), which do not transactivate, repressed IL-1β-stimulated K8 and K12 acetylation. Using chromatin immunoprecipitation assays, we show that dexamethasone inhibits IL-1β-enhanced acetylated K8-associated GM-CSF promoter enrichment in a concentration-dependent manner. Neither IL-1β nor dexamethasone elicited any GM-CSF promoter association at acetylated K5 residues. Furthermore, we show that GR acts both as a direct inhibitor of CREB binding protein (CBP)-associated HAT activity and also by recruiting HDAC2 to the p65-CBP HAT complex. This action does not involve de novo synthesis of HDAC protein or altered expression of CBP or p300/CBP-associated factor. This mechanism for glucocorticoid repression is novel and establishes that inhibition of histone acetylation is an additional level of control of inflammatory gene expression. This further suggests that pharmacological manipulation of of specific histone acetylation status is a potentially useful approach for the treatment of inflammatory diseases.


2007 ◽  
Vol 19 (1) ◽  
pp. 120
Author(s):  
I. Manosalva ◽  
C. Goday ◽  
P. Esponda

Ageing is a phenomenon related to mammalian female infertility. One cause of ageing-induced infertility is the abnormal meiotic maturation from germinal vesicle stage oocytes (GVs). GVs are immature oocytes, which stay arrested in the ovaries during the life span. The abnormal oocyte maturation in aged animals is partially originated from molecular changes, not well defined, such as chromatin modifications and differential gene expression. Here, we analyze chromatin modifications such as histone acetylation and the corresponding gene expression changes induced by ageing in mouse GVs. We measured by immunofluorescence histone H4 acetylation at lysine residues 5 (H4-K5), 8 (H4-K8), and 12 (H4-K12) in GVs collected from young (1 month old) and aged (12–18 months old) CDC1 female mice. Immunofluorescence was analyzed with a microscope (Leica TCS SP2 AOBS) and its image analysis software. Whereas H4-K5 and H4-K8 show similar acetylation levels in both young and old mice, significant lower acetylation of H4-K12 is detected in GVs from old mice. Since H4-K12 acetylation has been related to Cdc2a expression during oocyte maturation (Akiyama et al. 2004 Mol. Reprod. Dev. 69, 222–227; Minuzzo et al. 2005 Mol. Pharmacol. 68, 1496–1503), we investigated whether Cdc2a mRNA levels change in aged mice. Cdc2a expression was measured by RT-PCR and quantified with a densitometer (BioRad GS800). We observed a decrease of Cdc2a expression in GVs of old mice. This result is further confirmed by an immunofluorescence analysis where lower levels of Cdc2a protein in old mouse GVs was observed. In conclusion, we find that the levels of H4-K12 acetylation and Cdc2a mRNA are lower in old compared to young mouse GVs. Our observations suggest that ageing affects histone modifications such as H4-K12, which might induce chromatin remodelling and gene expression changes like that of Cdc2a.


Blood ◽  
2007 ◽  
Vol 110 (8) ◽  
pp. 2864-2871 ◽  
Author(s):  
Wulin Aerbajinai ◽  
Jianqiong Zhu ◽  
Zhigang Gao ◽  
Kyung Chin ◽  
Griffin P. Rodgers

Abstract Although thalidomide has been shown to improve anemia in some patients with myelodysplastic syndromes and stimulates erythropoietin in patients with multiple myeloma, thalidomide's specific effects on γ-globin gene expression during erythroid differentiation have not been studied. Here, we investigated the effects of thalidomide on γ-globin gene expression and the involved signaling pathway using an ex vivo culture system of primary human CD34+ cells. We found that thalidomide induced γ-globin mRNA expression in a dose-dependent manner, but had no effect on β-globin expression. We also demonstrated that intracellular reactive oxygen species (ROS) levels were increased by treatment with thalidomide for 48 hours (from day 3 to day 5). Western blot analysis demonstrated that thalidomide activated the p38 mitogen-activated protein kinase (MAPK) signaling pathway in a time- and dose-dependent manner and increased histone H4 acetylation. Pretreatment of cells with the antioxidant enzyme catalase and the intracellular hydroxyl scavenger dimethylthiourea (DMTU) abrogated the thalidomide-induced p38 MAPK activation and histone H4 acetylation. Moreover, pretreatment with catalase and DMTU diminished thalidomide-induced γ-globin gene expression. These data indicate that thalidomide induces increased expression of the γ-globin gene via ROS-dependent activation of the p38 MAPK signaling pathway and histone H4 acetylation.


Sign in / Sign up

Export Citation Format

Share Document