Proliferation and autoantibody production by mouse thyroglobulin (MTg)-specific B cells activated in vitro by MTg and MTg-specific T cells

1995 ◽  
Vol 45 (3) ◽  
pp. 189-193 ◽  
Author(s):  
Yingzi Cong ◽  
Helen Braley-Mullen
2020 ◽  
Author(s):  
Hritika Sharma ◽  
Anjali Bose ◽  
Uma Kumar ◽  
Rahul Pal

AbstractHemoglobin (Hb) has well-documented inflammatory effects and is normally efficiently scavenged; clearance mechanisms can be overwhelmed during conditions of erythrocyte lysis, a condition that may occur in systemic lupus erythematosus. Whether Hb is preferentially inflammatory in lupus and additionally induces autoreactivity against prominent autoantigens was assessed. Peripheral blood mononuclear cells derived from SLE patients secreted higher levels of lupus-associated inflammatory cytokines when incubated with Hb, effects negated by haptoglobin. Hb (more particularly, ferric Hb) triggered the preferential release of lupus-associated cytokines from splenocytes, B cells, CD4 T cells, CD8 T cells and plasmacytoid dendritic cells isolated from aging NZM2410 mice, and also had mitogenic effects on B cells. Ferric Hb activated multiple signaling pathways which were differentially responsible for the generation of specific cytokines; inflammatory signaling also appeared to be cell-context dependent. Pull-downs, followed by mass spectrometry, revealed interactions of Hb with several lupus-associated autoantigens; co-incubation of ferric Hb with apoptotic blebs (structures which contain packaged autoantigens, believed to trigger lupus autoreactivity) revealed synergies (in terms of cytokine release and autoantibody production in vitro) that were also restricted to the lupus genotype. Infusion of ferric Hb into NZM2410 mice led to enhanced release of lupus-associated cytokines, the generation of a spectrum of autoantibodies, and enhanced-onset glomerulosclerosis. Given that the biased recognition of ferric Hb in a lupus milieu, in concert with lupus-associated autoantigens, elicits the generation of inflammatory cytokines from multiple immune cell types and stimulates the generation of potentially pathogenic autoantibodies, neutralization of Hb could have beneficial effects.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 230.2-231
Author(s):  
A. Pappalardo ◽  
E. Wojciechowski ◽  
I. Odriozola ◽  
I. Douchet ◽  
N. Merillon ◽  
...  

Background:Neutrophils have been described as potent antigen-presenting cells able to activate T cells by MHC/TCR interaction and costimulatory molecules in tumor immunity. However, little is known about the direct interaction between neutrophils and CD4 T cells with respect to systemic lupus erythematosus (SLE). We have previously shown that OX40L expressed by monocytes from SLE patients promote the differentiation of naïve and memory cells into IL21 secreting T cells that are able to help B cells1,2.Objectives:In this study, we investigate OX40L expression on neutrophils from SLE patients and contribution of these OX40L+neutrophils in SLE pathogenesis to modulation of the B cell helper role of CD4 T cells.Methods:Surface expression of co-stimulatory molecules (OX40L, ICOSL, GITRL, 4-1BBL) on neutrophils from SLE patients and healthy donors (HD) was measured by flow cytometry (FC). Neutrophils from HD were stimulated with TLR7 or TLR8 agonists and IFNα after 5 hours of culture, OX40L expression was measured by FC and Western Blotting. CD4 T cells were cultured with the stimulated neutrophils for 3 days. At the end of the co-culture, percentages of IL21-expressing T follicular (Tfh) and peripheral helper (Tph) cells measured by FC. These generated T cells were also cultured in the presence of memory B cells. After 5 days of co-culture, plasmablast generation and Ig levels were assessed by FC and ELISA, respectively. Inhibition of OX40-OX40L interaction in vitro was achieved using ISB 830, a novel anti-OX40 mAb currently used in clinical trials.Results:Among the co-stimulatory molecules tested, percentages of OX40L+neutrophils in SLE (n=54) were increased compared to HD (n=25)(mean + SD: HD = 1,34%±1.62 vs SLE = 4,53%±8.1; p=0.29). OX40L expression positively correlated with SLE disease activity score (SLEDAI) (p = 0,04; r = 0,31) and with anti-DNA antibodies (p= 0,04, r = 0,33). Of note, the percentage of OX40L+neutrophils was higher in anti-sm-RNP+patients (n=16, mean= 9%±9.8), compared to anti-sm-RNP-patients (n=27, mean = 1,4%±2.5; p = 0,02). The percentage of OX40L+neutrophils was higher in patients with class III or IV lupus nephritis, and inflammatory infiltrate within the kidney biopsy disclosed OX40L+neutrophils, in close contact with T cells. Neutrophils from HD express OX40L with TLR8 agonist, or IFNα priming followed by TLR7 agonist. When memory CD4 T cells were cultured in the presence of TLR8-stimulated neutrophils, the proportion of IL21-expressing Tfh (CXCR5+PD1+) and Tph (CXCR5-PD1hi) were increased, compared to culture with unstimulated neutrophils. This process was dependent on OX40-OX40L interactions, since in vitro treatment with the anti-OX40 blocking antibody ISB 830, inhibited the differentiation of memory T cells into Tfh and Tph. Both generated Tfh and Tph were able to promote the differentiation of memory B cells into Ig-secreting plasmablasts.Conclusion:Our results disclose an unprecedented phenomenon where cross-talk between TLR7/8-activated neutrophils and CD4 lymphocytes operates through OX40L-OX40 costimulation, and neutrophils promote the differentiation of pro-inflammatory Tfh and Tph, as well as IL21 production. Therefore, OX40L/OX40 should be considered as a potentially therapeutic axis in SLE patients.References:[1]Jacquemin et al. Immunity 2015;[2]Jacquemin et al. JCI Insight 2018Disclosure of Interests:Angela Pappalardo Grant/research support from: Ichnos Sciences, Elodie Wojciechowski: None declared, Itsaso Odriozola: None declared, Isabelle Douchet: None declared, Nathalie Merillon: None declared, Andrea Boizard-Moracchini: None declared, Pierre Duffau: None declared, Estibaliz Lazaro: None declared, Marie-Agnes Doucey Employee of: Ichnos Sciences, Lamine Mbow Employee of: Ichnos Sciences, Christophe Richez Consultant of: Abbvie, Amgen, Mylan, Pfizer, Sandoz and UCB., Patrick Blanco Grant/research support from: Ichnos Sciences


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ana Colado ◽  
Esteban Enrique Elías ◽  
Valeria Judith Sarapura Martínez ◽  
Gregorio Cordini ◽  
Pablo Morande ◽  
...  

AbstractHypogammaglobulinemia is the most frequently observed immune defect in chronic lymphocytic leukemia (CLL). Although CLL patients usually have low serum levels of all isotypes (IgG, IgM and IgA), standard immunoglobulin (Ig) preparations for replacement therapy administrated to these patients contain more than 95% of IgG. Pentaglobin is an Ig preparation of intravenous application (IVIg) enriched with IgM and IgA (IVIgGMA), with the potential benefit to restore the Ig levels of all isotypes. Because IVIg preparations at high doses have well-documented anti-inflammatory and immunomodulatory effects, we aimed to evaluate the capacity of Pentaglobin and a standard IVIg preparation to affect leukemic and T cells from CLL patients. In contrast to standard IVIg, we found that IVIgGMA did not modify T cell activation and had a lower inhibitory effect on T cell proliferation. Regarding the activation of leukemic B cells through BCR, it was similarly reduced by both IVIgGMA and IVIgG. None of these IVIg preparations modified spontaneous apoptosis of T or leukemic B cells. However, the addition of IVIgGMA on in vitro cultures decreased the apoptosis of T cells induced by the BCL-2 inhibitor, venetoclax. Importantly, IVIgGMA did not impair venetoclax-induced apoptosis of leukemic B cells. Overall, our results add new data on the effects of different preparations of IVIg in CLL, and show that the IgM/IgA enriched preparation not only affects relevant mechanisms involved in CLL pathogenesis but also has a particular profile of immunomodulatory effects on T cells that deserves further investigation.


1971 ◽  
Vol 133 (6) ◽  
pp. 1325-1333 ◽  
Author(s):  
Klaus-Ulrich Hartmann

Spleen cells of bone marrow chimeras (B cells) and of irradiated mice injected with thymus cells and heterologous erythrocytes (educated T cells) were mixed and cultured together (17). The number of PFC developing in these cultures was dependent both on the concentration of the B cells and of the educated T cells. In excess of T cells the number of developing PFC is linearly dependent on the number of B cells. At high concentrations of T cells more PFC developed; the increase in the number of PFC was greatest between the 3rd and 4th day of culture. Increased numbers of educated T cells also assisted the development of PFC directed against the erythrocytes. It is concluded that the T cells not only play a role during the triggering of the precursor cells but also during the time of proliferation of the B cells; close contact between B and T cells seems to be needed to allow the positive activity of the T cells.


1991 ◽  
Vol 173 (6) ◽  
pp. 1433-1439 ◽  
Author(s):  
R H Lin ◽  
M J Mamula ◽  
J A Hardin ◽  
C A Janeway

A novel mechanism for breaking T cell self tolerance is described. B cells induced to make autoantibody by immunization of mice with the non-self protein human cytochrome c can present the self protein mouse cytochrome c to autoreactive T cells in immunogenic form. This mechanism of breaking T cell self tolerance could account for the role of foreign antigens in breaking not only B cell but also T cell self tolerance, leading to sustained autoantibody production in the absence of the foreign antigen.


PEDIATRICS ◽  
1994 ◽  
Vol 94 (2) ◽  
pp. 280-280
Author(s):  
Arden Levy ◽  
Andrew Liu

Purpose of the Studies. Hyper-IgM immunodeficiency is characterized by recurrent bacterial infections, normal or elevated IgM, and markedly decreased IgG, IgA, and IgE. Previous research suggested that the T cells of these patients are defective in their ability to help B cells make functional antibody. CD40 ligand (CD4OL) is a membrane glycoprotein on activated T helper cells and binds the CD40 molecule expressed on B cells, and induces proliferation and immunoglobulin class switching (in conjunction with IL-4). The gene for the CD4OL has been mapped to position q26.3-q27.1 on chromosome X (same as the Hyper-IgM gene and the area of isotype switching). Several research groups sought to determine if the immunodeficiency in Hyper-IgM patients is due to defective CD4OL. Findings. The five papers listed above document the work of different research groups that simultaneously found abnormalities in the CD4OL gene in a total of 16 patients with X-linked Hyper-IgM syndrome. Different mutations of the CD4OL gene have been discovered, including point mutations, deletions, and nonsense sequences. Mutant version of CD4OL taken from Hyper IgM patients were unable to "help" B cells in vitro. Thus, deficient CD40/CD40L interactions between B and T cells results in severely impaired immunity. Restricted CD40L gene expression to T cells may ultimately allow gene therapy as treatment. Reviewers' Comments. A concise editorial by Jean Marx entitled "Cell Communication Failure Leads to Immune Disorder" describes this landmark research and accompanies the Spriggs article in the February 12th issue of Science (pp. 896-897). This discovery may not only lead to treatment of this disorder, but also modification of other less favorable immune responses.


PEDIATRICS ◽  
1994 ◽  
Vol 94 (2) ◽  
pp. 280-280
Author(s):  
Arden Levy ◽  
Andrew Liu

Purpose of the Studies. Hyper-IgM immunodeficiency is characterized by recurrent bacterial infections, normal or elevated IgM, and markedly decreased IgG, IgA, and IgE. Previous research suggested that the T cells of these patients are defective in their ability to help B cells make functional antibody. CD40 ligand (CD4OL) is a membrane glycoprotein on activated T helper cells and binds the CD40 molecule expressed on B cells, and induces proliferation and immunoglobulin class switching (in conjunction with IL-4). The gene for the CD4OL has been mapped to position q26.3-q27.1 on chromosome X (same as the Hyper-IgM gene and the area of isotype switching). Several research groups sought to determine if the immunodeficiency in Hyper-IgM patients is due to defective CD4OL. Findings. The five papers listed above document the work of different research groups that simultaneously found abnormalities in the CD4OL gene in a total of 16 patients with X-linked Hyper-IgM syndrome. Different mutations of the CD4OL gene have been discovered, including point mutations, deletions, and nonsense sequences. Mutant version of CD4OL taken from Hyper IgM patients were unable to "help" B cells in vitro. Thus, deficient CD40/CD40L interactions between B and T cells results in severely impaired immunity. Restricted CD40L gene expression to T cells may ultimately allow gene therapy as treatment. Reviewers' Comments. A concise editorial by Jean Marx entitled "Cell Communication Failure Leads to Immune Disorder" describes this landmark research and accompanies the Spriggs article in the February 12th issue of Science (pp. 896-897). This discovery may not only lead to treatment of this disorder, but also modification of other less favorable immune responses.


1975 ◽  
Vol 142 (5) ◽  
pp. 1327-1333 ◽  
Author(s):  
G Opelz ◽  
M Kiuchi ◽  
M Takasugi ◽  
P I Terasaki

The background stimulation universally seen when lymphocytes are cultured in vitro has been shown to be markedly lowered by reducing the proportion of B lymphocytes. B-rich fractions of lymphocytes had extremely high background stimulation. It is concluded that stimulation of T cells, probably by autologous B cells, provides the most probable explanation for the findings described.


1987 ◽  
Vol 165 (6) ◽  
pp. 1675-1687 ◽  
Author(s):  
A G Rolink ◽  
T Radaszkiewicz ◽  
F Melchers

A quantitative analysis of the frequencies of autoantibody-producing B cells in GVHD and in normal mice has been undertaken by generating collections of hybridomas of activated B cells. These hybridomas secreted sufficient quantities of Ig to allow binding analyses on a panel of autoantigens. B cells have been activated in a variety of ways. In vivo they were activated by injection of alloreactive T cells of one parent, leading to GVHD by a foreign antigen, sheep erythrocytes, in a secondary response, or by the polyclonal activator LPS. B cells from an experimentally unstimulated animal were used for an analysis of the normal background. In vitro B cells were activated by alloreactive T cells or by LPS. The frequencies of hybridomas and, therefore, of activated B cells producing autoantibodies to DNA or to kidney were not significantly different in mice activated by a graft-vs.-host T cell response as compared with B cell populations activated by any of the other procedures. They were found to compose 7.1-17.1% of the total repertoire of activated B cells. Moreover, the frequencies of autoantibody-producing activated B cells does not change with time after induction of the graft-vs.-host reaction. The pattern and frequencies of autoantigen-binding specificities to cytoskeleton, smooth muscle, nuclei, mitochondria, and DNA were not found to be different in any of the groups of hybridomas. The single notable exception, found in GVHD mice, were hybridomas producing autoantibodies to kidney proximal tubular brush border. These results allow the conclusion that autoantigen-binding B cells exist in an activated state in GVHD mice, as well as in mice activated by a foreign antigen or by a polyclonal activator, in B cell populations activated in vitro either by alloreactive T cells or by a polyclonal activator, and even in the background of experimentally unstimulated animals. T cell-mediated graft-vs.-host activation, in large part, does not lead to a selective expansion of autoantigen-binding B cells. The main difference between the graft-vs.-host-activated B cell repertoire and all others is that approximately 90% of teh autoantibodies were of the IgG class, whereas al autoantibodies found in the other groups were IgM.


2021 ◽  
Vol 9 (Suppl 1) ◽  
pp. A3.2-A4
Author(s):  
J Grün ◽  
I Piseddu ◽  
C Perleberg ◽  
N Röhrle ◽  
S Endres ◽  
...  

BackgroundUnmethylated CpG-DNA is a potent ligand for the endosomal Toll-like-receptor-9, important for the immune activation to pathogen-associated molecules.1 CpG and other TLR-ligands show effective immunotherapeutic capacities in cancer treatment by inducing an antitumorigenic immunity.2 They are able to reduce tumor progression by reduction of intratumoral secretion of the immunoregulating chemokine CCL223 and subsequent recruitment of immunosuppressive regulatory T cells (Treg), which express CCR4 the only so far known receptor for CCL22.4 Our recent work has shown that CCL22 secretion by dendritic cells (DC) in the lymph node, mediates tolerance by inducing DC-Treg contacts.5 Indeed, in the absence of CCL22, immune responses to vaccination were stronger and resulted in tumor rejection.6 Therefore, we are aiming to investigate the effects of TLR-ligands on systemic CCL22 levels, elucidating all involved mechanisms to identify new targets for cancer immunotherapy.Materials and MethodsT, B and CD11c+ DCs of wildtype (wt) and RAG1-/- mice were isolated from splenocytes by magnetic-activated cell sorting for in vitro assays. Different co-cultures were incubated with CpG and GM-CSF, known as an CCL22 inducer.5 For in vivo experiments, wt mice were treated with CpG, R484 or poly(I:C) alone and in combination with GM-CSF. CCL22-levels in a number of organs were analyzed.ResultsAnalyzing the different immune cell compartments in vitro, we found that DCs in whole splenocytes secrete CCL22 during culture while DC cultured alone showed no CCL22 secretion. When treated with CpG, CCL22-levels were reduced in splenocytes, while it was induced in DC culture alone. The same results were seen when RAG splenocytes, that lack functional B and T cells, were cultured with CpG. CpG treated B cells were able to suppress CCL22 secretion by DC unlike T cells alone. Co-cultures of T and B cells treated with CpG, however, induced the strongest CCL22 suppression in DC. In vivo, we could show that all TLR ligands tested reduced CCL22 in a number of organs significantly. Furthermore, CpG showed the strongest suppression of CCL22 even in the presence of the CCL22 inducer GM-CSF.5ConclusionsWe could show that B cells with T cells mediate CCL22 suppression by TLR ligands. The fact that CpG was able to reduce CCL22 levels even in the presence of the inducer GM-CSF demonstrates the potent CCL22 suppressive capacity of TLR ligands.ReferencesO’Neill LA, et al. The history of toll-like receptors – redefining innate immunity. Nat Rev Immunol 2013;13(6):453–60.Rothenfusser S, et al. Recent advances in immunostimulatory CpG oligonucleotides. Curr Opin Mol Ther 2003;5(2):98–106.Wang S, et al. Intratumoral injection of a CpG oligonucleotide reverts resistance to PD-1 blockade by expanding multifunctional CD8+ T cells. Proc Natl Acad Sci U S A 2016;113(46): E7240–E7249.Rapp M, et al. CCL22 controls immunity by promoting regulatory T cell communication with dendritic cells in lymph nodes. J Exp Med 2019;216(5):1170–1181.Piseddu I, et al. Constitutive expression of CCL22 is mediated by T cell-derived GM-CSF. J Immunol 2020;205(8):2056–2065.Anz D, et al. Suppression of intratumoral CCL22 by type i interferon inhibits migration of regulatory T cells and blocks cancer progression. Cancer Res 2015;75(21):4483–93.Disclosure InformationJ. Grün: None. I. Piseddu: None. C. Perleberg: None. N. Röhrle: None. S. Endres: None. D. Anz: None.


Sign in / Sign up

Export Citation Format

Share Document