Study of ion beam induced mixing during sputter depth profiling of thin films by LEIS

Author(s):  
S.G. Puranik ◽  
E.V. King
Keyword(s):  
Ion Beam ◽  
2008 ◽  
Vol 255 (4) ◽  
pp. 1055-1057 ◽  
Author(s):  
Hyun Kyong Shon ◽  
Tae Geol Lee ◽  
Dahl Hyun Kim ◽  
Hee Jae Kang ◽  
Byoung Hoon Lee ◽  
...  

1995 ◽  
Vol 398 ◽  
Author(s):  
Weimin Si ◽  
Michael Dudley ◽  
Pengxing Li ◽  
Renjie Wu

ABSTRACTThe products and kinetics of solid state reactions between TiC and Ti3Al have been investigated using X-ray diffractometry (XRD) and Auger electron spectroscopy (AES) with Ar ion beam sputtering. Diffusion couples were prepared by sputtering TiC thin films onto polished Ti3AI substrates, and then isothermally annealed in vacuum in the temperature range of 800 to 1000°C for 0.25 to 2.25 hours. The thickness of the interfacial reaction layer was obtained from AES elemental concentration depth profiling, while the reaction products were identified from XRD spectra. In the TiC/Ti3Al system, the reaction product was primarily P(Ti3AlC) phase. The growth-rate of the reaction product was fitted to a parabolic growth law (dZ/dt = k1/Z) and the activation energy of the rate constant was about 36.16 kcal/mole. The reaction mechanism will be discussed on the basis of thermodynamical equilibrium in Ti-Al-C ternary system.


The Analyst ◽  
2016 ◽  
Vol 141 (21) ◽  
pp. 5944-5985 ◽  
Author(s):  
Chris Jeynes ◽  
Julien L. Colaux

The analysis of thin films is of central importance for functional materials, including the very large and active field of nanomaterials.


2002 ◽  
Vol 725 ◽  
Author(s):  
Gunnar Suchaneck ◽  
Bodo Wolf ◽  
Margarita Guenther ◽  
Gerald Gerlach

AbstractHardness measurements in ion implanted polymers are complicated by the fact that the hardness of the material varies as a function of depth within the modified layer. This effect is induced by the distribution of deposited energy, which produces a depth-dependent variation in microstructure. We have used the depth-sensing nano-indentation technique to investigate the mechanical properties of thin films of ion-beam modified aromatic polymers deposited onto silicon substrates. The depth of the ion-modified surface layer was determined using the load variation technique from the hardness and elastic module depth profile and the depth dependence of the power law coefficient of the unloading curve.


1990 ◽  
Vol 201 ◽  
Author(s):  
Yang-Tse Cheng ◽  
Steven J. Simko ◽  
Maria C. Militello ◽  
Audrey A. Dow ◽  
Gregory W. Auner ◽  
...  

AbstractHigh energy ion mixing occurs when an ion beam of a few hundred keV bombards an interface under the surface. Low energy ion mixing arises when an ion beam of a few keV bombards an interface near the surface during, for example, sputter depth profiling and low energy ion assisted deposition. At low temperatures, the rate of both high and low energy ion mixing can be influenced by thermodynamic parameters, such as the heat of mixing and the cohesive energy of solids. These effects are demonstrated by ion mixing experiments using metallic bilayers consisting of high atomic number elements. A model of diffusion in thermal spikes is used to explain this similarity. Low energy ion mixing can also be strongly affected by surface diffusion and the morphological stability of thin films. These effects are illustrated using results obtained from sputter depth profiling of Ag/Ni bilayers at elevated temperatures. High energy ion mixing at low temperatures can be influenced by the anisotropic momentum distribution in a collision cascade as seen from a set of marker experiments to determine the dominant moving species in high energy ion mixing. These similarities and differences between high and low energy ion mixing illustrate the diversity of ion-solid interactions.


Author(s):  
Dudley M. Sherman ◽  
Thos. E. Hutchinson

The in situ electron microscope technique has been shown to be a powerful method for investigating the nucleation and growth of thin films formed by vacuum vapor deposition. The nucleation and early stages of growth of metal deposits formed by ion beam sputter-deposition are now being studied by the in situ technique.A duoplasmatron ion source and lens assembly has been attached to one side of the universal chamber of an RCA EMU-4 microscope and a sputtering target inserted into the chamber from the opposite side. The material to be deposited, in disc form, is bonded to the end of an electrically isolated copper rod that has provisions for target water cooling. The ion beam is normal to the microscope electron beam and the target is placed adjacent to the electron beam above the specimen hot stage, as shown in Figure 1.


Author(s):  
Mark Denker ◽  
Jennifer Wall ◽  
Mark Ray ◽  
Richard Linton

Reactive ion beams such as O2+ and Cs+ are used in Secondary Ion Mass Spectrometry (SIMS) to analyze solids for trace impurities. Primary beam properties such as energy, dose, and incidence angle can be systematically varied to optimize depth resolution versus sensitivity tradeoffs for a given SIMS depth profiling application. However, it is generally observed that the sputtering process causes surface roughening, typically represented by nanometer-sized features such as cones, pits, pyramids, and ripples. A roughened surface will degrade the depth resolution of the SIMS data. The purpose of this study is to examine the relationship of the roughness of the surface to the primary ion beam energy, dose, and incidence angle. AFM offers the ability to quantitatively probe this surface roughness. For the initial investigations, the sample chosen was <100> silicon, and the ion beam was O2+.Work to date by other researchers typically employed Scanning Tunneling Microscopy (STM) to probe the surface topography.


Author(s):  
J. Kulik ◽  
Y. Lifshitz ◽  
G.D. Lempert ◽  
S. Rotter ◽  
J.W. Rabalais ◽  
...  

Carbon thin films with diamond-like properties have generated significant interest in condensed matter science in recent years. Their extreme hardness combined with insulating electronic characteristics and high thermal conductivity make them attractive for a variety of uses including abrasion resistant coatings and applications in electronic devices. Understanding the growth and structure of such films is therefore of technological interest as well as a goal of basic physics and chemistry research. Recent investigations have demonstrated the usefulness of energetic ion beam deposition in the preparation of such films. We have begun an electron microscopy investigation into the microstructure and electron energy loss spectra of diamond like carbon thin films prepared by energetic ion beam deposition.The carbon films were deposited using the MEIRA ion beam facility at the Soreq Nuclear Research Center in Yavne, Israel. Mass selected C+ beams in the range 50 to 300 eV were directed onto Si {100} which had been etched with HF prior to deposition.


Sign in / Sign up

Export Citation Format

Share Document