Chlorinated hydrocarbons in the near-surface atmospheric layer of the North Atlantic

1981 ◽  
Vol 28 (12) ◽  
pp. 862
2021 ◽  
Author(s):  
Terhi K. Laurila ◽  
Victoria A. Sinclair ◽  
Hilppa Gregow

<p>The knowledge of long-term climate and variability of near-surface wind speeds is essential and widely used among meteorologists, climate scientists and in industries such as wind energy and forestry. The new high-resolution ERA5 reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) will likely be used as a reference in future climate projections and in many wind-related applications. Hence, it is important to know what is the mean climate and variability of wind speeds in ERA5.</p><p>We present the monthly 10-m wind speed climate and decadal variability in the North Atlantic and Europe during the 40-year period (1979-2018) based on ERA5. In addition, we examine temporal time series and possible trends in three locations: the central North Atlantic, Finland and Iberian Peninsula. Moreover, we investigate what are the physical reasons for the decadal changes in 10-m wind speeds.</p><p>The 40-year mean and the 98th percentile wind speeds show a distinct contrast between land and sea with the strongest winds over the ocean and a seasonal variation with the strongest winds during winter time. The winds have the highest values and variabilities associated with storm tracks and local wind phenomena such as the mistral. To investigate the extremeness of the winds, we defined an extreme find factor (EWF) which is the ratio between the 98th percentile and mean wind speeds. The EWF is higher in southern Europe than in northern Europe during all months. Mostly no statistically significant linear trends of 10-m wind speeds were found in the 40-year period in the three locations and the annual and decadal variability was large.</p><p>The windiest decade in northern Europe was the 1990s and in southern Europe the 1980s and 2010s. The decadal changes in 10-m wind speeds were largely explained by the position of the jet stream and storm tracks and the strength of the north-south pressure gradient over the North Atlantic. In addition, we investigated the correlation between the North Atlantic Oscillation (NAO) and the Atlantic Multi-decadal Oscillation (AMO) in the three locations. The NAO has a positive correlation in the central North Atlantic and Finland and a negative correlation in Iberian Peninsula. The AMO correlates moderately with the winds in the central North Atlantic but no correlation was found in Finland or the Iberian Peninsula. Overall, our study highlights that rather than just using long-term linear trends in wind speeds it is more informative to consider inter-annual or decadal variability.</p>


2020 ◽  
Vol 8 (4) ◽  
pp. SQ105-SQ114
Author(s):  
Tor Arne Johansen ◽  
Bent Ole Ruud ◽  
Tormod Henningsen ◽  
Marco Brönner

Andøya is an island in the north of Norway. On its eastern side, it contains a local downfaulted basin of Mesozoic sediments sheltered from erosion during subsequent periods of Pleistocene glaciation. The sediments were deposited before the North Atlantic rifting and partly overlie weathered basement. We have recently carried out seismic surveying to better understand the geometry and seismic responses of the basin system. Extensive civil infrastructure and wet mire made the study area challenging for seismic exploration. We shot the survey lines at wet mire with detonating cord during winter when the mire was frozen. In the summer, we conducted seismic surveying along road shoulders with a small-scale vibrator. The seismic processing was particularly challenging due to the influence of traffic noise, heterogeneous near-surface conditions, and large seismic velocity contrasts. We interpreted the seismic lines in integration with other geophysical data and well logs to obtain a consistent and best possible seismic model of the basin. Our interpretation indicates a reorganization of the regional paleostress regime that took place during the continental breakup in the Eocene. In spite of severe obstacles for seismic surveying of the area, our results honor the robustness of the seismic method for subsurface imaging.


2013 ◽  
Vol 9 (2) ◽  
pp. 859-870 ◽  
Author(s):  
R. J. Telford ◽  
C. Li ◽  
M. Kucera

Abstract. We demonstrate that the temperature signal in the planktonic foraminifera assemblage data from the North Atlantic typically does not originate from near-surface waters and argue that this has the potential to bias sea surface temperature reconstructions using transfer functions calibrated against near-surface temperatures if the thermal structure of the upper few hundred metres of ocean changes over time. CMIP5 climate models indicate that ocean thermal structure in the North Atlantic changed between the Last Glacial Maximum (LGM) and the pre-industrial (PI), with some regions, mainly in the tropics, of the LGM ocean lacking good thermal analogues in the PI. Transfer functions calibrated against different depths reconstruct a marked subsurface cooling in parts of the tropical North Atlantic during the last glacial, in contrast to previous studies that reconstruct only a modest cooling. These possible biases in temperature reconstructions may affect estimates of climate sensitivity based on the difference between LGM and pre-industrial climate. Quantifying these biases has the potential to alter our understanding of LGM climate and improve estimates of climate sensitivity.


2015 ◽  
Vol 72 (2) ◽  
pp. 572-597 ◽  
Author(s):  
Thomas J. Galarneau ◽  
Ron McTaggart-Cowan ◽  
Lance F. Bosart ◽  
Christopher A. Davis

Abstract Tropical cyclone (TC) development near upper-level potential vorticity (PV) streamers in the North Atlantic is studied from synoptic climatology, composite, and case study perspectives. Midlatitude anticyclonic wave breaking is instrumental in driving PV streamers into subtropical and tropical latitudes, in particular near the time-mean midocean trough identified previously as the tropical upper-tropospheric trough. Twelve TCs developed within one Rossby radius of PV streamers in the North Atlantic from June through November 2004–08. This study uses composite analysis in the disturbance-relative framework to compare the structural and thermodynamic evolution for developing and nondeveloping cases. The results show that incipient tropical disturbances are embedded in an environment characterized by 850–200-hPa westerly vertical wind shear and mid- and upper-level quasigeostrophic ascent associated with the PV streamer, with minor differences between developing and nondeveloping cases. The key difference in synoptic-scale flow between developing and nondeveloping cases is the strength of the anticyclone north of the incipient tropical disturbance. The developing cases are marked by a stronger near-surface pressure gradient and attendant easterly flow north of the vortex, which drives enhanced surface latent heat fluxes and westward (upshear) water vapor transport. This evolution in water vapor facilitates an upshear propagation of convection, and the diabatically influenced divergent outflow erodes the PV streamer aloft by negative advection of PV by the divergent wind. This result suggests that the PV streamer plays a secondary role in TC development, with the structure and intensity of the synoptic-scale anticyclone north of the incipient vortex playing a primary role.


2011 ◽  
Vol 68 (8) ◽  
pp. 1784-1805 ◽  
Author(s):  
David James Brayshaw ◽  
Brian Hoskins ◽  
Michael Blackburn

Abstract The impact of North Atlantic SST patterns on the storm track is investigated using a hierarchy of GCM simulations using idealized (aquaplanet) and “semirealistic” boundary conditions in the atmospheric component (HadAM3) of the third climate configuration of the Met Office Unified Model (HadCM3). This framework enables the mechanisms determining the tropospheric response to North Atlantic SST patterns to be examined, both in isolation and in combination with continental-scale landmasses and orography. In isolation, a “Gulf Stream” SST pattern acts to strengthen the downstream storm track while a “North Atlantic Drift” SST pattern weakens it. These changes are consistent with changes in the extratropical SST gradient and near-surface baroclinicity, and each storm-track response is associated with a consistent change in the tropospheric jet structure. Locally enhanced near-surface horizontal wind convergence is found over the warm side of strengthened SST gradients associated with ascending air and increased precipitation, consistent with previous studies. When the combined SST pattern is introduced into the semirealistic framework (including the “North American” continent and the “Rocky Mountains”), the results suggest that the topographically generated southwest–northeast tilt in the North Atlantic storm track is enhanced. In particular, the Gulf Stream shifts the storm track south in the western Atlantic whereas the strong high-latitude SST gradient in the northeastern Atlantic enhances the storm track there.


2009 ◽  
Vol 22 (11) ◽  
pp. 3146-3155 ◽  
Author(s):  
David J. Brayshaw ◽  
Tim Woollings ◽  
Michael Vellinga

Abstract The tropospheric response to a forced shutdown of the North Atlantic Ocean’s meridional overturning circulation (MOC) is investigated in a coupled ocean–atmosphere GCM [the third climate configuration of the Met Office Unified Model (HadCM3)]. The strength of the boreal winter North Atlantic storm track is significantly increased and penetrates much farther into western Europe. The changes in the storm track are shown to be consistent with the changes in near-surface baroclinicity, which can be linked to changes in surface temperature gradients near regions of sea ice formation and in the open ocean. Changes in the SST of the tropical Atlantic are linked to a strengthening of the subtropical jet to the north, which, combined with the enhanced storm track, leads to a pronounced split in the jet structure over Europe. EOF analysis and stationary box indices methods are used to analyze changes to the North Atlantic Oscillation (NAO). There is no consistent signal of a change in the variability of the NAO, and while the changes in the mean flow project onto the positive NAO phase, they are significantly different from it. However, there is a clear eastward shift of the NAO pattern in the shutdown run, and this potentially has implications for ocean circulation and for the interpretation of proxy paleoclimate records.


2020 ◽  
Author(s):  
Nour-Eddine Omrani ◽  
Fumiaki Ogawa ◽  
Hisashi Nakamura ◽  
Noel Keenlyside ◽  
Sandro Lubis ◽  
...  

<p>Semi-idealized Atmospheric General Circulation-Model (AGCM) experiments are used, in order to study the different aspects of the hemisphere-scale wintertime troposphere/stratosphere-coupled circulation that are maintained by the North Atlantic and Pacific Ocean Western Boundary Currents (OWBCs). Here we show that the North Atlantic and Pacific OWBCs jointly maintain and shape the wintertime hemispheric circulation and its leading mode of variability Northern Annular Mode (NAM). The OWBCs energize baroclinic waves that reinforce quasi-annular hemispheric structure in the tropospheric eddy-driven jetstreams and NAM variability. Without the OWBCs, the wintertime NAM variability is much weaker and its impact on the continental and maritime surface climate is largely insignificant. Atmospheric energy redistribution caused by the OWBCs acts to damp the near-surface atmospheric baroclinicity and compensates the associated oceanic meridional energy transport in agreement with the Bjerknes compensation. Furthermore, the OWBCs substantially weaken the wintertime stratospheric polar vortex by enhancing the upward planetary wave propagation, and thereby affecting both stratospheric and tropospheric NAM-annularity. It is shown that the impact of OWBCs on northern hemisphere circulation has significant implication for stratosphere/troposphere dynamical coupling, time-scales on the NAM, frequency of Sudden stratospheric warming and potential formation of polar stratospheric clouds.</p><p> </p><p>Reference:</p><p>Omrani et al., 2019: Key Role of the ocean Western Boundary currents in shaping the Northern Hemisphere climate, Scientific Reports, https://doi.org/10.1038/s41598-019-39392-y</p><p> </p>


2018 ◽  
Vol 31 (18) ◽  
pp. 7287-7312 ◽  
Author(s):  
Franziska Aemisegger ◽  
Lukas Papritz

This paper presents an object-based, global climatology (1979–2014) of strong large-scale ocean evaporation (SLOE) and its associated climatic properties. SLOE is diagnosed using an “atmospheric moisture uptake efficiency” criterion related to the ratio of surface evaporation and integrated water vapor content in the near-surface atmosphere. The chosen Eulerian identification procedure focuses on events that strongly contribute to the available near-surface atmospheric humidity. SLOE is particularly frequent along the warm ocean western boundary currents, downstream of large continental areas, and at the sea ice edge in polar regions with frequent cold-air outbreaks. Furthermore, wind-driven SLOE occurs in regions with topographically enforced winds. On a global annual average, SLOE occurs only 6% of the time but explains 22% of total ocean evaporation. An analysis of the past history and fate of air parcels involved in cold season SLOE in the North Atlantic and south Indian Oceans shows that cold-air advection is the main mechanism that induces these events. Extratropical cyclones thereby play an important role in setting the necessary equatorward synoptic flow. Consequently, the interannual variability of SLOE associated with the North Atlantic Oscillation and the southern annular mode reveals a very high sensitivity of SLOE with respect to the location of the storm tracks. This study highlights the strong link between transient synoptic events and the spatiotemporal variability in ocean evaporation patterns, which cannot be deduced from thermodynamic steady-state and climate mean state considerations alone.


Sign in / Sign up

Export Citation Format

Share Document