THE CONTROL OF CELLULAR GROWTH AND DEATH IN THE DEVELOPMENT OF AN INSECT

Author(s):  
Ulrich Clever
Keyword(s):  
1968 ◽  
Vol 59 (2_Suppl) ◽  
pp. S35-S51 ◽  
Author(s):  
B. L. Lobel ◽  
E. Levy

ABSTRACT Activities of various hydrolases and dehydrogenases were studied during the formation, development and involution of cyclic corpora lutea and in the corpora lutea of early pregnancy. At 24 hours postovulation the luteal cells, whether of granulosal or thecal origin, contained demonstrable levels of Δ5-3β-hydroxysteroid dehydrogenase and the NADP and NADPH2 diaphorases. During the period of proliferation and cellular growth, enzymic activities in the luteal cells were moderate at first, and then increased. In the mature corpus luteum, activities of the dehydrogenases occurred in all luteal cells but were most intense in the large polymorphic luteal cells. Activities of hydrolytic enzymes, low in the immediate postovulatory period, increased with the development of the vascular system. Enzymic characteristics of corpora lutea of gestation were similar to those of cyclic corpora, except for phosphorylase activity which was observed in luteal cells in gestational corpora, but confined to the vascular walls in cyclic corpora. No increase in activities of 17β- and 20β-hydroxysteroid dehydrogenases (above those seen in pre-ovulatory follicles) were observed after incubation of sections of either mature cyclic or gestational corpora. Involution of cyclic corpora lutea began with degenerative changes in the blood vessels: pyknosis of the endothelial cell nuclei and a sudden decline in activities of hydrolytic enzymes in the vascular walls. Subsequently, the luteal cells showed a sharp decrease in activities of the dehydrogenases as well as other signs of regressive change. The cytochemical findings are discussed in relation to biochemical observations on steroid synthesis by the bovine corpus luteum.


Author(s):  
Tara A Shrout

Cardiac hypertrophy is a growth process that occurs in response to stress stimuli or injury, and leads to the induction of several pathways to alter gene expression. Under hypertrophic stimuli, sarcomeric structure is disrupted, both as a consequence of gene expression and local changes in sarcomeric proteins. Cardiac-restricted ankyrin repeat protein (CARP) is one such protein that function both in cardiac sarcomeres and at the transcriptional level. We postulate that due to this dual nature, CARP plays a key role in maintaining the cardiac sarcomere. GATA4 is another protein detected in cardiomyocytes as important in hypertrophy, as it is activated by hypertrophic stimuli, and directly binds to DNA to alter gene expression. Results of GATA4 activation over time were inconclusive; however, the role of CARP in mediating hypertrophic growth in cardiomyocytes was clearly demonstrated. In this study, Neonatal Rat Ventricular Myocytes were used as a model to detect changes over time in CARP and GATA4 under hypertrophic stimulation by phenylephrine and high serum media. Results were detected by analysis of immunoblotting. The specific role that CARP plays in mediating cellular growth under hypertrophic stimuli was studied through immunofluorescence, which demonstrated that cardiomyocyte growth with hypertrophic stimulation was significantly blunted when NRVMs were co-treated with CARP siRNA. These data suggest that CARP plays an important role in the hypertrophic response in cardiomyocytes.


2020 ◽  
Vol 23 (7) ◽  
pp. 611-623
Author(s):  
Ahmed A. Soliman ◽  
Fawzy A. Attaby ◽  
Othman I. Alajrawy ◽  
Azza A.A. Abou-hussein ◽  
Wolfgang Linert

Aim and Objective: Platinum (II) and platinum (IV) of pyrophosphate complexes have been prepared and characterized to discover their potential as antitumor drugs. This study was conducted to prepare and characterize new ternary platinum (II) complexes with formamidine and pyrophosphate as an antitumor candidate. Materials and Methods: The complexes have been characterized by mass, infrared, UV-Vis. spectroscopy, elemental analysis, magnetic susceptibility, thermal analyses, and theoretical calculations. They have been tested for their cytotoxicity, which was carried out using the fastcolorimetric assay for cellular growth and survival against MCF-7 (breast cancer cell line), HCT- 116 (colon carcinoma cell line), and HepG-2 (hepatocellular cancer cell line). Results: All complexes are diamagnetic, and the electronic spectral data displayed the bands due to square planar Pt(II) complexes. The optimized complexes structures (1-4) indicated a distorted square planar geometry where O-Pt-O and N-Pt-N bond angles were 82.04°-96.44°, respectively. Conclusion: The complexes showed noticeable cytotoxicity and are considered as promising antitumor candidates for further applications.


Author(s):  
Jiko Raut ◽  
Prithidipa Sahoo

Abstract:: Thiol-containing amino acids and peptides play crucial roles in many physiological processses. For example, Cysteine (Cys) and Homocysteine (Hcy) are considered to be related to a number of health disorders such as renal failure, AIDS, Alzheimer’s and Parkinson’s diseases, atherosclerotic cardiovascular diseases, neutral tube defects, and coronary heart disease. Glutathione (GSH), an important tripeptide with a thiol group, performs vital biological functions that are in-volved in combating oxidative stress and maintaining redox homeostasis. Cysteine also plays important roles in our bodies as an antioxidant, a metal cofactor binder in enzymes, and a protein structure stabilizer by disulfide bond formation in the proteins. Hcy are involved in cellular growth and GSH in redox homeostasis. Hence, the rapid, sensitive, and selective de-tection of such biothiols is of considerable importance and significant interest. Different fluorescent chemosensors have been introduced to develop and improve the detection techniques and accuracy of these biothiols. In this review article we have presented some research works to show a guiding principle for the design of effective chemosensors which are highly sensitive and selective for the detection of particular a group of biothiols in aqueous medium. In line with these develop-ments, the researchers have developed novel chemosensors that signal binding events of these above mentioned biothiols through their optical properties. The binding mechanism and properties have also been established with different theoretical studies. Their applications in the form of colorimetric kit, logic gates, live cell imaging, and quantification from different bi-ological samples have also been developed.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Erin M. Ostrem Loss ◽  
Mi-Kyung Lee ◽  
Ming-Yueh Wu ◽  
Julia Martien ◽  
Wanping Chen ◽  
...  

ABSTRACT Soil-dwelling fungal species possess the versatile metabolic capability to degrade complex organic compounds that are toxic to humans, yet the mechanisms they employ remain largely unknown. Benzo[a]pyrene (BaP) is a pervasive carcinogenic contaminant, posing a significant concern for human health. Here, we report that several Aspergillus species are capable of degrading BaP. Exposing Aspergillus nidulans cells to BaP results in transcriptomic and metabolic changes associated with cellular growth and energy generation, implying that the fungus utilizes BaP as a growth substrate. Importantly, we identify and characterize the conserved bapA gene encoding a cytochrome P450 monooxygenase that is necessary for the metabolic utilization of BaP in Aspergillus. We further demonstrate that the fungal NF-κB-type velvet regulators VeA and VelB are required for proper expression of bapA in response to nutrient limitation and BaP degradation in A. nidulans. Our study illuminates fundamental knowledge of fungal BaP metabolism and provides novel insights into enhancing bioremediation potential. IMPORTANCE We are increasingly exposed to environmental pollutants, including the carcinogen benzo[a]pyrene (BaP), which has prompted extensive research into human metabolism of toxicants. However, little is known about metabolic mechanisms employed by fungi that are able to use some toxic pollutants as the substrates for growth, leaving innocuous by-products. This study systemically demonstrates that a common soil-dwelling fungus is able to use benzo[a]pyrene as food, which results in expression and metabolic changes associated with growth and energy generation. Importantly, this study reveals key components of the metabolic utilization of BaP, notably a cytochrome P450 monooxygenase and the fungal NF-κB-type transcriptional regulators. Our study advances fundamental knowledge of fungal BaP metabolism and provides novel insight into designing and implementing enhanced bioremediation strategies.


1998 ◽  
Vol 18 (11) ◽  
pp. 953-961 ◽  
Author(s):  
AIMIN ZHOU ◽  
JAYASHREE M. PARANJAPE ◽  
BRET A. HASSEL ◽  
HUIQIN NIE ◽  
STEVEN SHAH ◽  
...  
Keyword(s):  

Author(s):  
Néstor David Giraldo ◽  
Sandra Marcela Correa ◽  
Andrés Arbeláez ◽  
Felix L. Figueroa ◽  
Rigoberto Ríos-Estepa ◽  
...  

AbstractIn this study the metabolic responses of Botryococcus braunii were analyzed upon different inorganic carbon dosages and nutrient limitation conditions in terms of lipid and biomass productivity, as well as photosynthetic performance. The nutritional schemes evaluated included different levels of sodium bicarbonate and nitrogen and phosphorus starvation, which were contrasted against standard cultures fed with CO2. Bicarbonate was found to be an advantageous carbon source since high dosages caused a significant increase in biomass and lipid productivity, in addition to an enhanced photosynthetic quantum yield and neutral lipids abundance. This contrasts to the commonly used approach of microalgae nutrient limitation, which leads to high lipid accumulation at the expense of impaired cellular growth, causing a decline in overall lipid productivity. The lipidome analysis served to hypothesize about the influence of the nutritional context on B. braunii structural and storage lipid metabolism, besides the adaptive responses exhibited by cells that underwent nutrient stress.


2021 ◽  
Author(s):  
Mahsa Babaei ◽  
Luisa Sartori ◽  
Alexey Karpukhin ◽  
Dmitrii Abashkin ◽  
Elena Matrosova ◽  
...  

Abstract Biotechnological production requires genetically stable recombinant strains. To ensure genomic stability, recombinant DNA is commonly integrated into the genome of the host strain. Multiple genetic tools have been developed for genomic integration into baker's yeast Saccharomyces cerevisiae. Previously, we had developed a vector toolkit EasyClone-MarkerFree for stable integration into eleven sites on chromosomes X, XI, and XII of S. cerevisiae. The markerless integration was enabled by CRISPR-Cas9 system. In this study, we have expanded the kit with eight additional intergenic integration sites located on different chromosomes. The integration efficiency into the new sites was above 80%. The expression level of green fluorescence protein (gfp) for all eight sites was similar or above XI-2 site from the original EasyClone-MarkerFree toolkit. The cellular growth was not affected by the integration into any of the new eight locations. The eight-vector expansion kit is available from AddGene.


Sign in / Sign up

Export Citation Format

Share Document