Thermoelectric materials-based on organic semiconductors

Author(s):  
Qingshuo Wei ◽  
Masakazu Mukaida ◽  
Kazuhiro Kirihara ◽  
Takao Ishida
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jian Liu ◽  
Bas van der Zee ◽  
Riccardo Alessandri ◽  
Selim Sami ◽  
Jingjin Dong ◽  
...  

Abstract The ‘phonon-glass electron-crystal’ concept has triggered most of the progress that has been achieved in inorganic thermoelectrics in the past two decades. Organic thermoelectric materials, unlike their inorganic counterparts, exhibit molecular diversity, flexible mechanical properties and easy fabrication, and are mostly ‘phonon glasses’. However, the thermoelectric performances of these organic materials are largely limited by low molecular order and they are therefore far from being ‘electron crystals’. Here, we report a molecularly n-doped fullerene derivative with meticulous design of the side chain that approaches an organic ‘PGEC’ thermoelectric material. This thermoelectric material exhibits an excellent electrical conductivity of >10 S cm−1 and an ultralow thermal conductivity of <0.1 Wm−1K−1, leading to the best figure of merit ZT = 0.34 (at 120 °C) among all reported single-host n-type organic thermoelectric materials. The key factor to achieving the record performance is to use ‘arm-shaped’ double-triethylene-glycol-type side chains, which not only offer excellent doping efficiency (~60%) but also induce a disorder-to-order transition upon thermal annealing. This study illustrates the vast potential of organic semiconductors as thermoelectric materials.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Shinichi Hata ◽  
Misaki Shiraishi ◽  
Soichiro Yasuda ◽  
Gergely Juhasz ◽  
Yukou Du ◽  
...  

Since future energy harvesting technologies require stable supply and high-efficiency energy conversion, there is an increasing demand for high-performance organic thermoelectric generators (TEGs) based on waterproof thermoelectric materials. The poor stability of n-type organic semiconductors in air and water has proved a roadblock in the development of reliable thermoelectric power generators. We developed a simple green route for preparing n-type carbon nanotubes (CNTs) by doping with cationic surfactants and fabricated films of the doped CNTs using only aqueous media. The thermoelectric properties of the CNT films were investigated in detail. The nanotubes doped using a cationic surfactant (cetyltrimethylammonium chloride (CTAC)) retained an n-doped state for at least 28 days when exposed to water and air, indicating higher stability than that for contemporary CNT-based thermoelectric materials. The wrapping of the surfactant molecules around the CNTs is responsible for blocking oxygen and water from attacking the CNT walls, thus, extending the lifetime of the n-doped state of the CNTs. We also fabricated thermoelectric power conversion modules comprising CTAC-doped (n-type) and sodium dodecylbenzenesulfonate- (SDBS-) doped (p-type) CNTs and tested their stabilities in water. The modules retained 80±2.4% of their initial maximum output power (at a temperature difference of 75°C) after being submerged in water for 30 days, even without any sealing fills to prevent device degradation. The remarkable stability of our CNT-based modules can enable the development of reliable soft electronics for underwater applications.


Author(s):  
ASHAQ HUSSAIN SOFI ◽  
BAASIT ABUBAKR ◽  
ANIL MAINI ◽  
MOHAMMAD ASHRAF SHAH

2019 ◽  
Author(s):  
Alexander Giovannitti ◽  
Reem B. Rashid ◽  
Quentin Thiburce ◽  
Bryan D. Paulsen ◽  
Camila Cendra ◽  
...  

<p>Avoiding faradaic side reactions during the operation of electrochemical devices is important to enhance the device stability, to achieve low power consumption, and to prevent the formation of reactive side‑products. This is particularly important for bioelectronic devices which are designed to operate in biological systems. While redox‑active materials based on conducting and semiconducting polymers represent an exciting class of materials for bioelectronic devices, they are susceptible to electrochemical side‑reactions with molecular oxygen during device operation. We show that this electrochemical side reaction yields hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), a reactive side‑product, which may be harmful to the local biological environment and may also accelerate device degradation. We report a design strategy for the development of redox-active organic semiconductors based on donor-acceptor copolymers that prevent the formation of H<sub>2</sub>O<sub>2</sub> during device operation. This study elucidates the previously overlooked side-reactions between redox-active conjugated polymers and molecular oxygen in electrochemical devices for bioelectronics, which is critical for the operation of electrolyte‑gated devices in application-relevant environments.</p>


2018 ◽  
Author(s):  
Weikun Zhu ◽  
Erfan Mohammadi ◽  
Ying Diao

Morphology modulation offers significant control over organic electronic device performance. However, morphology quantification has been rarely carried out via image analysis. In this work, we designed a MATLAB program to evaluate two key parameters describing morphology of small molecule semiconductor thin films: fractal dimension and film coverage. We then employ this program in a case study of meniscus-guided coating of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C<sub>8</sub>-BTBT) under various conditions to analyze a diverse and complex morphology set. The evolution of morphology in terms of fractal dimension and film coverage was studied as a function of coating speed. We discovered that combined fractal dimension and film coverage can quantitatively capture the key characteristics of C<sub>8</sub>-BTBT thin film morphology; change of these two parameters further inform morphology transition. Furthermore, fractal dimension could potentially shed light on thin film growth mechanisms.


2019 ◽  
Author(s):  
Simil Thomas ◽  
Hong Li ◽  
Raghunath R. Dasari ◽  
Austin Evans ◽  
William Dichtel ◽  
...  

<p>We have considered three two-dimensional (2D) π-conjugated polymer networks (i.e., covalent organic frameworks, COFs) materials based on pyrene, porphyrin, and zinc-porphyrin cores connected <i>via</i> diacetylenic linkers. Their electronic structures, investigated at the density functional theory global-hybrid level, are indicative of valence and conduction bands that have large widths, ranging between 1 and 2 eV. Using a molecular approach to derive the electronic couplings between adjacent core units and the electron-vibration couplings, the three π-conjugated 2D COFs are predicted to have ambipolar charge-transport characteristics with electron and hole mobilities in the range of 65-95 cm<sup>2</sup>V<sup>-1</sup>s<sup>-1</sup>. Such predicted values rank these 2D COFs among the highest-mobility organic semiconductors. In addition, we have synthesized the zinc-porphyrin based 2D COF and carried out structural characterization via powder X-ray diffraction and surface area analysis, which demonstrates the feasability of these electroactive networks.</p>


Author(s):  
Hirohiko Fukagawa ◽  
Munehiro Hasegawa ◽  
Katsuyuki Morii ◽  
Kazuma Suzuki ◽  
Tsubasa Sasaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document