Three-dimensional self-powered DNA walking machine based on catalyzed hairpin assembly energy transfer strategy

2021 ◽  
pp. 114529
Hao Fan ◽  
Yani He ◽  
Qingxia Shu ◽  
Xinru Wang ◽  
Hanfeng Cui ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. eabd6978 ◽  
Jingxin Zhao ◽  
Hongyu Lu ◽  
Yan Zhang ◽  
Shixiong Yu ◽  
Oleksandr I. Malyi ◽  

Coaxial fiber-shaped supercapacitors with short charge carrier diffusion paths are highly desirable as high-performance energy storage devices for wearable electronics. However, the traditional approaches based on the multistep fabrication processes for constructing the fiber-shaped energy device still encounter persistent restrictions in fabrication procedure, scalability, and mechanical durability. To overcome this critical challenge, an all-in-one coaxial fiber-shaped asymmetric supercapacitor (FASC) device is realized by a direct coherent multi-ink writing three-dimensional printing technology via designing the internal structure of the coaxial needles and regulating the rheological property and the feed rates of the multi-ink. Benefitting from the compact coaxial structure, the FASC device delivers a superior areal energy/power density at a high mass loading, and outstanding mechanical stability. As a conceptual exhibition for system integration, the FASC device is integrated with mechanical units and pressure sensor to realize high-performance self-powered mechanical devices and monitoring systems, respectively.

Lijuan Huang ◽  
Zhengrui Hu ◽  
Hong Zhang ◽  
Yuanqiang Xiong ◽  
Shiqiang Fan ◽  

Gallium oxide (Ga2O3) has been extensively studied in recent years because it is a natural candidate material for next-generation solar-blind deep ultraviolet photodetectors (PDs). Herein, a three dimensional (3D) amorphous...

2020 ◽  
Vol 117 (31) ◽  
pp. 18292-18301 ◽  
Yadong Xu ◽  
Ganggang Zhao ◽  
Liang Zhu ◽  
Qihui Fei ◽  
Zhe Zhang ◽  

Pencils and papers are ubiquitous in our society and have been widely used for writing and drawing, because they are easy to use, low-cost, widely accessible, and disposable. However, their applications in emerging skin-interfaced health monitoring and interventions are still not well explored. Herein, we report a variety of pencil–paper-based on-skin electronic devices, including biophysical (temperature, biopotential) sensors, sweat biochemical (pH, uric acid, glucose) sensors, thermal stimulators, and humidity energy harvesters. Among these devices, pencil-drawn graphite patterns (or combined with other compounds) serve as conductive traces and sensing electrodes, and office-copy papers work as flexible supporting substrates. The enabled devices can perform real-time, continuous, and high-fidelity monitoring of a range of vital biophysical and biochemical signals from human bodies, including skin temperatures, electrocardiograms, electromyograms, alpha, beta, and theta rhythms, instantaneous heart rates, respiratory rates, and sweat pH, uric acid, and glucose, as well as deliver programmed thermal stimulations. Notably, the qualities of recorded signals are comparable to those measured with conventional methods. Moreover, humidity energy harvesters are prepared by creating a gradient distribution of oxygen-containing groups on office-copy papers between pencil-drawn electrodes. One single-unit device (0.87 cm2) can generate a sustained voltage of up to 480 mV for over 2 h from ambient humidity. Furthermore, a self-powered on-skin iontophoretic transdermal drug-delivery system is developed as an on-skin chemical intervention example. In addition, pencil–paper-based antennas, two-dimensional (2D) and three-dimensional (3D) circuits with light-emitting diodes (LEDs) and batteries, reconfigurable assembly and biodegradable electronics (based on water-soluble papers) are explored.

IEEE Access ◽  
2020 ◽  
pp. 1-1
Zhihua Wang ◽  
Shiming Sun ◽  
Na Li ◽  
Tao Yao ◽  
Dianli Lv

2020 ◽  
Vol 5 (41) ◽  
pp. eaaz7946 ◽  
You Yu ◽  
Joanna Nassar ◽  
Changhao Xu ◽  
Jihong Min ◽  
Yiran Yang ◽  

Existing electronic skin (e-skin) sensing platforms are equipped to monitor physical parameters using power from batteries or near-field communication. For e-skins to be applied in the next generation of robotics and medical devices, they must operate wirelessly and be self-powered. However, despite recent efforts to harvest energy from the human body, self-powered e-skin with the ability to perform biosensing with Bluetooth communication are limited because of the lack of a continuous energy source and limited power efficiency. Here, we report a flexible and fully perspiration-powered integrated electronic skin (PPES) for multiplexed metabolic sensing in situ. The battery-free e-skin contains multimodal sensors and highly efficient lactate biofuel cells that use a unique integration of zero- to three-dimensional nanomaterials to achieve high power intensity and long-term stability. The PPES delivered a record-breaking power density of 3.5 milliwatt·centimeter−2 for biofuel cells in untreated human body fluids (human sweat) and displayed a very stable performance during a 60-hour continuous operation. It selectively monitored key metabolic analytes (e.g., urea, NH4+, glucose, and pH) and the skin temperature during prolonged physical activities and wirelessly transmitted the data to the user interface using Bluetooth. The PPES was also able to monitor muscle contraction and work as a human-machine interface for human-prosthesis walking.

Sign in / Sign up

Export Citation Format

Share Document