Assessment of bottomside thickness parameters over magnetic equator and low latitudes during high solar activity of solar cycle 24

2020 ◽  
Vol 177 ◽  
pp. 182-191 ◽  
Author(s):  
Punyawi Jamjareegulgarn
2020 ◽  
Vol 63 (6) ◽  
Author(s):  
Onkar Gurav ◽  
Rupesh Ghodpage ◽  
Parashram Patil ◽  
Sripathi Samireddipalle ◽  
Ashok Sharma ◽  
...  

In this paper, the occurrence characteristics of the equatorial plasma bubbles (EPBs) using OI 630.0 nm all sky imager (ASI) night airglow observations over Kolhapur (16.8o N, 74.2o E, 10.6o dip. Lat.) during the solar cycle-24 are presented. These results are discussed in terms of season, solar and magnetic activity during years 2011 to 2018. The ASI observations were only carried out during January to May and October to December months due to unfavorable weather conditions. The results suggest that while January, February and December are the only months where EPBs were found to occur over Kolhapur in any year, but the percentage of occurrence of EPBs during these months suggests their low occurrence rate during solar minimum. A total of 683 nights of observations were carried, out of which, 93 nights are found to be magnetically disturbed nights having Ap>18. In addition, the ASI observations are also correlated with Pre-Reversal Enhancement of the vertical drift of the evening sector at Tirunelveli on few storm events for comparison. The important findings of this study are: 1) increase in the occurrence of EPBs with respect to the solar activity; 2) suppression of EPBs on 71 disturbed nights, while enhancement of EPBs on 22 nights under magnetic disturbance; 3) EPBs occurrence during equinox months is found to be higher than winter months during ascending phase of solar cycle-24.; and, 4) EPBs are mostly observed in the pre-midnight sector in the high solar activity (HSA) period, while they are seen in the post-midnight to dawn sector during the low solar activity (LSA) period. We also noticed non-occurrence of EPBs during equinox month in the year 2018 which seems to be peculiar and needs further investigations.


2020 ◽  
Vol 6 (3) ◽  
pp. 81-85
Author(s):  
Aleksandr Mikhalev

In the paper, variations of the night emission intensities in the 557.7 and 630 nm atomic oxygen lines [OI] in 2011–2019 have been analyzed. The analysis is based on data from the ISTP SB RAS Geophysical Observatory. The emission intensities are compared with atmospheric, solar, and geophysical parameters. High correlation coefficients between monthly average and annual average 630.0 nm emission intensities and solar activity indices F10.7 have been obtained. This suggests a key role of solar activity in variations of this emission in the period of interest. Variations of the 557.7 nm emission demonstrate to a greater extent the correlations of the stratospheric zonal wind (QBO.U30 index) with quasi-biennial oscillations. The causes of the weak dependence of the 557.7 nm emission intensity on solar activity in solar cycle 24 are discussed.


2021 ◽  
Author(s):  
Yasmina Bouderba ◽  
Ener Aganou ◽  
Abdenaceur Lemgharbi

<p>In this work we will show the behavior of the horizontal component H of the Earth Magnetic Field (EMF) along the seasons during the period of solar cycle 24 lasting from 2009 to 2019. By means of  continuous measurements of geomagnetic components (X, Y) of the EMF, we compute the horizontal component H at the Earth’s surface. The data are recorded with a time resolution of one minute at Tamanrasset observatory in Algeria at the geographical coordinates of 22.79° North and 5.53° East. These data are available from the INTERMAGNET network. We find that the variation in amplitude of the hourly average of H component at low latitude changes from a season to another and it is greater at the maximum solar activity than at the minimum solar activity.</p><p><strong>Keywords:</strong> Solar cycle 24, Season, Horizontal component H. </p>


2021 ◽  
Vol 19 (8) ◽  
pp. 157-168
Author(s):  
Wafaa H.A. Zaki

The ionosphere layer (F2) is known as the most important layer for High frequency (Hf) radio communication because it is a permanent layer and excited during the day and night so it is able to reflect the frequencies at night and day due to its high critical frequency, and this layer is affected by daily and monthly solar activity. In this study the characteristics and behavior of F2 layer during Solar cycle 24 were studied, the effect of Sunspots number (Ri) on the critical frequency (foF2), were investigated for the years (2015, 2016, 2017, 2018, 2019, 2020) which represents the down phase of the solar cycle 24 over Erbil station (36° N, 44° E) by finding the critical frequency (foF2) values, the layer’ s impression times are determined for the days of solstice as well as equinox, where the solar activity was examined for the days of the winter and summer solstice and the days of the spring and autumn equinoxes for a period of 24 hours by applied the International Reference Ionosphere model IRI (2016). The output data for foF2 were verified by using the IRI-Ne- Quick option by specifying the time, date and Sunspot number parameters. Statistical analysis was caried out through the application of the Minitab (version 2018) in order to find the correlation between the critical frequency (foF2) of Ionospheric layer F2 and Sunspot number. It was concluded that the correlation is strong and positive, this indicate that critical frequency (foF2) increase with increasing Sunspots number (Ri) for solar cycle 24.


2020 ◽  
Vol 31 (4) ◽  
pp. 15
Author(s):  
Samar Abdalkaream Thabit ◽  
Loay E. George ◽  
Khalid A. Hadi

In this research, the seasonal Optimal Reliable Frequency (ORF) variations between different transmitter/receiver stations have been determined. Mosul, Baghdad, and Basra have been chosen as tested transmitting stations that located in the northern, center, and southern of Iraqi zone. In this research, the minimum and maximum years (2009 and 2014) of solar cycle 24 have been chosen to examine the effect of solar activity on the determined seasonal ORF parameter. Mathematical model has been proposed which leads to generate the Optimal Reliable Frequency that can maintain the seasonal connection links for different path lengths and bearings. The suggested ORF parameter represented by a different orders polynomial equation. The polynomial equation has been determined depending on different selected parameters (path length, bearing, time (day), months and BUF values). The suggested seasonal ORF parameter was examined for the three stations of the adopted years. The value of the seasonal ORF ionospheric parameter increased with the increase of path length and varies with the bearing between the transmitting and receiving stations also, the seasonal ORF values were higher at maximum solar cycle (2014) than the minimum solar cycle (2009).


2013 ◽  
Vol 31 (11) ◽  
pp. 2085-2096 ◽  
Author(s):  
A. O. Akala ◽  
G. K. Seemala ◽  
P. H. Doherty ◽  
C. E. Valladares ◽  
C. S. Carrano ◽  
...  

Abstract. GPS-TEC data were observed at the same local time at two equatorial stations on both longitudes: Lagos (6.52° N, 3.4° E, 3.04° S magnetic latitude), Nigeria; and Pucallpa (8.38° S, 74.57° W, 4.25° N magnetic latitude), Peru during the minimum (2009, 2010) and ascending (2011) phases of solar cycle 24. These data were grouped into daily, seasonal and solar activity sets. The day-to-day variations in vertical TEC (VTEC) recorded the maximum during 14:00–16:00 LT and minimum during 04:00–06:00 LT at both longitudes. Seasonally, during solar minimum, maximum VTEC values were observed during March equinox and minimum during solstices. However, during the ascending phase of the solar activity, the maximum values were recorded during the December solstice and minimum during the June solstice. VTEC also increased with solar activity at both longitudes. On longitude by longitude comparison, the African GPS station generally recorded higher VTEC values than the American GPS station. Furthermore, harmonic analysis technique was used to extract the annual and semi-annual components of the amplitudes of the TEC series at both stations. The semi-annual variations dominated the TEC series over the African equatorial station, while the annual variations dominated those over the American equatorial station. The GPS-TEC-derived averages for non-storm days were compared with the corresponding values derived by the IRI-2007 with the NeQuick topside option. The NeQuick option of IRI-2007 showed better performance at the American sector than the African sector, but generally underestimating TEC during the early morning hours at both longitudes.


2017 ◽  
Vol 9 (1) ◽  
pp. 27-41
Author(s):  
R. Atulkar ◽  
P. A. Khan ◽  
A. A. Mansoori ◽  
P. K. Purohit

The paper presents a comparative study of the ionospheric sporadic E layer parameters (fbEs, foEs, and h’Es) retrieved from ground based ionosonde at mid latitude station Yamagawa, Japan (31.20 N, 130.370 E) during the ascending phase of 24th solar cycle i.e. during January 2012 to December 2014. The comparison between the E-region parameters has been carried out on a diurnal, seasonal, annual and day night basis. The diurnal maxima of foEs, fbEs, and h’Es are generally higher during high solar activity. From the present study it is found that the highest values of fbEs are observed during the summer while the lowest values are observed during autumn at mid latitude. Similarly, the highest values of foEs are observed during the summer season while the lowest values are recorded in autumn season. However, the highest values of h’Es are recorded during the spring and the lowest values are recorded in autumn. The variability of Es during the day and night time is also studied. The sporadic E can form and disappear in a short time during either the day or night. We have also studied the percentage occurrence of sporadic E. The occurrence of Es changes from year to year.


Sign in / Sign up

Export Citation Format

Share Document