scholarly journals Correlation of Measured Load-Displacement Curves in Small Punch Tests with Tensile Stress-Strain Curves

2021 ◽  
Vol 204 ◽  
pp. 116501
Author(s):  
Nicolas Leclerc ◽  
Ali Khosravani ◽  
Sepideh Hashemi ◽  
Daniel B. Miracle ◽  
Surya R. Kalidindi
2021 ◽  
Author(s):  
Ming Song ◽  
Xuyang Li ◽  
Wenchun Jiang ◽  
Jiru Zhong ◽  
Kaishu Guan

Abstract Evaluating the strength properties of materials of an in-service pipeline without shutting down transportation has been always a challenge. A novel and non-destructive method for determining the true stress-strain curve of pipeline steel based on backpropagation artificial neural network and small punch test is proposed in this study. The elastoplastic mechanical properties of the pipeline steels could be obtained by this method. The load-displacement curves of 2261 groups of different hypothetical materials were obtained by the finite element model of small punch test within Gurson-Tvergaard-Needleman (GTN) damage parameters and used to train the neural network. The relationship between the load-displacement curve of small punch test and the true stress-strain curve of the conventional uniaxial tensile test was established based on the trained neural network. The accuracy and wide applicability of the trained neural network were verified by the experimental data of four types of materials obtained by small punch test and standard tensile test, respectively. The established relationship can be used to predict the true stress-strain curve of the pipeline steels to determine the elastoplastic mechanical properties only by the load-displacement curve of the small punch test without performing the conventional tensile test.


2020 ◽  
Vol 29 ◽  
pp. 2633366X2095872
Author(s):  
Yang Wei ◽  
Mengqian Zhou ◽  
Kunpeng Zhao ◽  
Kang Zhao ◽  
Guofen Li

Glulam bamboo has been preliminarily explored for use as a structural building material, and its stress–strain model under axial loading has a fundamental role in the analysis of bamboo components. To study the tension and compression behaviour of glulam bamboo, the bamboo scrimber and laminated bamboo as two kinds of typical glulam bamboo materials were tested under axial loading. Their mechanical behaviour and failure modes were investigated. The results showed that the bamboo scrimber and laminated bamboo have similar failure modes. For tensile failure, bamboo fibres were ruptured with sawtooth failure surfaces shown as brittle failure; for compression failure, the two modes of compression are buckling and compression shear failure. The stress–strain relationship curves of the bamboo scrimber and laminated bamboo are also similar. The tensile stress–strain curves showed a linear relationship, and the compressive stress–strain curves can be divided into three stages: elastic, elastoplastic and post-yield. Based on the test results, the stress–strain model was proposed for glulam bamboo, in which a linear equation was used to describe the tensile stress–strain relationship and the Richard–Abbott model was employed to model the compressive stress–strain relationship. A comparison with the experimental results shows that the predicted results are in good agreement with the experimental curves.


Author(s):  
R.N. Dass ◽  
S.C. Yen ◽  
V.K. Puri ◽  
B.M. Das ◽  
M.A. Wright

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3626
Author(s):  
Łukasz Hojdys ◽  
Piotr Krajewski

This paper presents the results of direct tensile tests performed on six different FRCM (fabric reinforced cementitious matrix) strengthening systems used for masonry structures. The emphasis was placed on the determination of the mechanical parameters of each tested system and a comparison of their tensile behaviour in terms of first crack stress, ultimate stress, ultimate strain, cracking pattern, failure mode and idealised tensile stress-strain curve. In addition to the basic mechanical tensile parameters, accidental load eccentricities, matrix tensile strengths, and matrix modules of elasticity were estimated. The results of the tests showed that the tensile behaviour of FRCM composites strongly depends on the parameters of the constituent materials (matrix and fabric). In the tests, tensile failure of reinforcement and fibre slippage within the matrix were observed. The presented research showed that the accidental eccentricities did not substantially affect the obtained results and that the more slender the specimen used, the more consistent the obtained results. The analysis based on a rule of mixtures showed that the direct tensile to flexural tensile strength ratio of the matrixes used in the test was 0.2 to 0.4. Finally, the tensile stress–strain relationship for the tested FRCMs was idealised by a bi- or tri-linear curve.


2017 ◽  
Vol 37 (4) ◽  
pp. 401-409 ◽  
Author(s):  
Zhanyu Zhai ◽  
Christian Gröschel ◽  
Dietmar Drummer

Abstract The objective of this study was to determine the engineering constants and off-axis tensile stress-strain relation of single-ply quasi-unidirectional (UD) glass fiber (GF)/polypropylene (PP) composites using the new approach. A series of off-axis tensile tests of quasi-UD composites were carried out. In this study, Puck’s interfiber fracture criterion was expanded for the first time to estimate the off-axis tensile stresses of UD composites. With the experimental values, the shear properties were obtained through the curve-fitting methods. Damage mechanisms were demonstrated to evolve with the loading angle. By comparison to experimental data, the Hahn-Tsai equation, together with the transformation equation, was found to be adequate to describe the off-axis tensile stress-strain relation of single-ply quasi-UD GF/PP composites.


1991 ◽  
Vol 239 ◽  
Author(s):  
Paul D. Garrett ◽  
Brian K. Daniels

ABSTRACTFundamental mechanical properties of a-C:H (amorphous or “diamond-like” carbon, DLC) thin film coatings have been investigated. Coatings were deposited by a methane-argon RF plasma on polycarbonate films. Tensile stress-strain behavior of the coated polymer was studied using an extensometer to monitor strain. The differences in moduli between uncoated and coated samples were used to calculate apparent coating moduli, which varied from 1 GPA to 82 GPa. The mode of failure was observed via in-situ optical microscopy during deformation. Intrinsic bond strength of the coating/substrate interface was estimated from crack spacings in the deformed coating.


1975 ◽  
Vol 48 (4) ◽  
pp. 615-622 ◽  
Author(s):  
N. Nakajima ◽  
E. A. Collins

Abstract Capillary rheometry of carbon-black-filled butadiene—acrylonitrile copolymers at 125°C was performed over a wide shear rate range. The data were corrected for pressure loss in the barrel and at the capillary entrance, and for the non-Newtonian velocity profile (Rabinowitsch correction). No appreciable effect of pressure on viscosity was observed. The die swell values were very small, 1.1–1.4. This fact and the shape of the plots of shear stress vs. shear rate imply the presence of a particulate structure, which is probably built by carbon black surrounded with bound rubber. Unlike the behavior of raw amorphous elastomers, the steady-shear viscosity, the dynamic complex viscosity, and the viscosity calculated from tensile stress-strain behavior were significantly different from each other. That is, the capillary flow data indicated an alteration of the structure towards strain softening, and the tensile stress-strain behavior showed strain hardening, indicating retention of the structure up to the yield point. In the dynamic measurement, being conducted at very small strain, the structure is least disturbed. With unfilled elastomers essentially the same deformational mechanism was believed to be responsible in these three measurements, because the results can be expressed by a single master curve.


Sign in / Sign up

Export Citation Format

Share Document