The impact of alternative cropping systems on global warming potential, grain yield and groundwater use

2015 ◽  
Vol 203 ◽  
pp. 46-54 ◽  
Author(s):  
Bing Gao ◽  
Xiaotang Ju ◽  
Qingfeng Meng ◽  
Zhenling Cui ◽  
Peter Christie ◽  
...  
2007 ◽  
Vol 4 (2) ◽  
pp. 1059-1092 ◽  
Author(s):  
S. Lehuger ◽  
B. Gabrielle ◽  
E. Larmanou ◽  
P. Laville ◽  
P. Cellier ◽  
...  

Abstract. Nitrous oxide, carbon dioxide and methane are the main biogenic greenhouse gases (GHG) contributing to the global warming potential (GWP) of agro-ecosystems. Evaluating the impact of agriculture on climate thus requires a capacity to predict the net exchanges of these gases in an integrated manner, as related to environmental conditions and crop management. Here, we used two year-round data sets from two intensively-monitored cropping systems in northern France to test the ability of the biophysical crop model CERES-EGC to simulate GHG exchanges at the plot-scale. The experiments involved maize and rapeseed crops on a loam and rendzina soils, respectively. The model was subsequently extrapolated to predict CO2 and N2O fluxes over an entire crop rotation. Indirect emissions (IE) arising from the production of agricultural inputs and from cropping operations were also added to the final GWP. One experimental site (involving a wheat-maize-barley rotation on a loamy soil) was a net source of GHG with a GWP of 350 kg CO2-C eq ha−1 yr−1, of which 75% were due to IE and 25% to direct N2O emissions. The other site (involving an oilseed rape-wheat-barley rotation on a rendzina) was a net sink of GHG for –250 kg CO2-C eq ha−1 yr−1, mainly due to a higher predicted C sequestration potential and C return from crops. Such modelling approach makes it possible to test various agronomic management scenarios, in order to design productive agro-ecosystems with low global warming impact.


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 80 ◽  
Author(s):  
Ricardo Ramírez-Villegas ◽  
Ola Eriksson ◽  
Thomas Olofsson

The aim of this study is to assess how the use of fossil and nuclear power in different renovation scenarios affects the environmental impacts of a multi-family dwelling in Sweden, and how changes in the electricity production with different energy carriers affect the environmental impact. In line with the Paris Agreement, the European Union has set an agenda to reduce greenhouse gas emissions by means of energy efficiency in buildings. It is estimated that by the year 2050, 80% of Europe’s population will be living in buildings that already exist. This means it is important for the European Union to renovate buildings to improve energy efficiency. In this study, eight renovation scenarios, using six different Northern European electricity mixes, were analyzed using the standard of the European Committee for Standardization for life cycle assessment of buildings. This study covers all life cycle steps from cradle to grave. The renovation scenarios include combinations of photovoltaics, geothermal heat pumps, heat recovery ventilation, and improvement of the building envelope. The results show that while in some electricity mixes a reduction in the global warming potential can be achieved, it can be at the expense of an increase in radioactive waste production, and, in mixes with a high share of fossil fuels, the global warming potential of the scenarios increases with time, compared with that of the original building. It also shows that in most electricity mixes, scenarios that reduce the active heat demand of the building end up in reducing both the global warming potential and radioactive waste, making them less sensitive to changes in the energy system.


2018 ◽  
Author(s):  
Brett McPherson ◽  
Mihray Sharip ◽  
Terry Grimmond

Background. Sustainable purchasing can reduce greenhouse gas (GHG) emissions at healthcare facilities (HCF). A previous study found that converting from disposable to reusable sharps containers (DSC, RSC) reduced sharps waste stream GHG by 84% but, in finding transport distances impacted significantly on GHG outcomes, recommended further studies where transport distances are large. This case-study examines the impact on GHG of nation-wide transport distances when a large US health system converted from DSC to RSC. Methods. The study examined the alternate use of DSC and RSC at a large US university hospital where: the source of polymer was distant from the RSC manufacturing plant; both manufacturing plants were over 3,000 km from the HCF; and the RSC disposal plant was considerably further from the HCF than was the DSC disposal plant. Using a “cradle to grave” life cycle assessment (LCA) tool we calculated annual GHG emissions (CO2, CH4, N2O) in metric tonnes of carbon dioxide equivalents (MTCO2eq) to assess the impact on global warming potential (GWP) of each container system. Primary energy input data was used wherever possible and region-specific impact conversions used to calculate GWP of each activity over a 12-month period. Unit process GHG were collated into Manufacture, Transport, Washing, and Treatment & disposal. Emission totals were workload-normalized and analysed using CHI2 test with P ≤0.05 and rate ratios at 95% CL. Results. The hospital reduced its annual GWP by 168 MTCO2eq (-64.5%; p < 0.001), and annually eliminated 50.2 tonnes of plastic DSC and 8.1 tonnes of cardboard from the sharps waste stream. Of the plastic eliminated, 31.8 tonnes were diverted from landfill and 18.4 from incineration. Discussion. Unlike GHG reduction strategies dependent on changes in staff behaviour (waste segregation, recycling, turning off lights, car-pooling, etc), purchasing strategies can enable immediate, sustainable and institution-wide GHG reductions to be achieved. Medical waste containers contribute significantly to the supply chain carbon footprint and, although non-sharp medical waste volumes have decreased significantly with avid segregation, sharps wastes have increased, and can account for 50% of total medical waste volume. Thus converting from DSC to RSC can assist reduce the GWP footprint of the medical waste stream. This study confirmed that large transport distances between polymer manufacturer and container manufacturer; container manufacturer and user; and/or between user and processing facilities, can significantly impact the GWP of sharps containment systems. However, even with large transport distances, we found that a large university health system significantly reduced the GWP of their sharps waste stream by converting from DSC to RSC.


2018 ◽  
Author(s):  
Brett McPherson ◽  
Mihray Sharip ◽  
Terry Grimmond

Background. Sustainable purchasing can reduce greenhouse gas (GHG) emissions at healthcare facilities (HCF). A previous study found that converting from disposable to reusable sharps containers (DSC, RSC) reduced sharps waste stream GHG by 84% but, in finding transport distances impacted significantly on GHG outcomes, recommended further studies where transport distances are large. This case-study examines the impact on GHG of nation-wide transport distances when a large US health system converted from DSC to RSC. Methods. The study examined the alternate use of DSC and RSC at a large US university hospital where: the source of polymer was distant from the RSC manufacturing plant; both manufacturing plants were over 3,000 km from the HCF; and the RSC disposal plant was considerably further from the HCF than was the DSC disposal plant. Using a “cradle to grave” life cycle assessment (LCA) tool we calculated annual GHG emissions (CO2, CH4, N2O) in metric tonnes of carbon dioxide equivalents (MTCO2eq) to assess the impact on global warming potential (GWP) of each container system. Primary energy input data was used wherever possible and region-specific impact conversions used to calculate GWP of each activity over a 12-month period. Unit process GHG were collated into Manufacture, Transport, Washing, and Treatment & disposal. Emission totals were workload-normalized and analysed using CHI2 test with P ≤0.05 and rate ratios at 95% CL. Results. The hospital reduced its annual GWP by 168 MTCO2eq (-64.5%; p < 0.001), and annually eliminated 50.2 tonnes of plastic DSC and 8.1 tonnes of cardboard from the sharps waste stream. Of the plastic eliminated, 31.8 tonnes were diverted from landfill and 18.4 from incineration. Discussion. Unlike GHG reduction strategies dependent on changes in staff behaviour (waste segregation, recycling, turning off lights, car-pooling, etc), purchasing strategies can enable immediate, sustainable and institution-wide GHG reductions to be achieved. Medical waste containers contribute significantly to the supply chain carbon footprint and, although non-sharp medical waste volumes have decreased significantly with avid segregation, sharps wastes have increased, and can account for 50% of total medical waste volume. Thus converting from DSC to RSC can assist reduce the GWP footprint of the medical waste stream. This study confirmed that large transport distances between polymer manufacturer and container manufacturer; container manufacturer and user; and/or between user and processing facilities, can significantly impact the GWP of sharps containment systems. However, even with large transport distances, we found that a large university health system significantly reduced the GWP of their sharps waste stream by converting from DSC to RSC.


Author(s):  
Suman Kumar Sharma

Sustainability of life form on the earth is a major concern of every nation, which stems from the continued global warming trend, which has become a major policy, political, and economic issue. Global warming is the most important challenge thrown by the human activities largely due to rapid pace of industrialization in the twenty first century. The impact is likely to extend to next few centuries and unless controlled there would be irrevocable damage to the life form on this planet. Human made halocarbons have a high global warming potential, and some still have the potential to cause damage to the ozone layer as well if released to the atmosphere. The implications of global warming have far-reaching effects beyond the imagination of common person. Rise in global temperature, rise in sea level, food shortages, large scale spread of diseases & infections, catastrophic economic consequences and colossal loss of bio-diversity are some of the major implications of global warming trend. Although many methods are in vogue for comparison of impact of global warming of different compounds, yet the concept of Global warming potential with reference to Carbon dioxide is the simplest one and is widely used. An endeavor has been made in this paper to correlate and develop empirical relations of global warming potential and atmospheric lifetimes of Halocarbons. A new parameter Glife has been evolved for this purpose.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2535 ◽  
Author(s):  
Rui Pacheco ◽  
Carla Silva

In Europe, ethanol is blended with gasoline fuel in 5 or 10% volume (E5 or E10). In USA the blend is 15% in volume (E15) and there are also pumps that provide E85. In Brazil, the conventional gasoline is E27 and there are pumps that offer E100, due to the growing market of flex fuel vehicles. Bioethanol production is usually by means of biological conversion of several biomass feedstocks (first generation sugar cane in Brazil, corn in the USA, sugar beet in Europe, or second-generation bagasse of sugarcane or lignocellulosic materials from crop wastes). The environmental sustainability of the bioethanol is usually measured by the global warming potential metric (GWP in CO2eq), 100 years time horizon. Reviewed values could range from 0.31 to 5.55 gCO2eq/LETOH. A biomass-to-ethanol industrial scenario was used to evaluate the impact of methodological choices on CO2eq: conventional versus dynamic Life Cycle Assessment; different impact assessment methods (TRACI, IPCC, ILCD, IMPACT, EDIP, and CML); electricity mix of the geographical region/country for different factory locations; differences in CO2eq factor for CH4 and N2O due to updates in Intergovernmental Panel on Climate Change (IPCC) reports (5 reports so far), different factory operational lifetimes and future improved productivities. Results showed that the electricity mix (factory location) and land use are the factors that have the greatest effect (up to 800% deviation). The use of the CO2 equivalency factors stated in different IPCC reports has the least influence (less than 3%). The consideration of the biogenic emissions (uptake at agricultural stage and release at the fermentation stage) and different allocation methods is also influential, and each can make values vary by 250%.


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 888
Author(s):  
Md. Khairul Alam ◽  
Richard W. Bell ◽  
Mirza Hasanuzzaman ◽  
N. Salahin ◽  
M.H. Rashid ◽  
...  

Rice-based intensive cropping systems require high input levels making them less profitable and vulnerable to the reduced availability of labor and water in Asia. With continuous conventional puddled rice transplanting, the situation is exacerbated by damaged soil structure, declining underground water and decreasing land and water productivity. To minimize these negative effects a range of new crop establishment practices have been developed (zero tillage, dry direct seeding, wet direct seeding, water seeding, strip planting, bed planting, non-puddled transplanting of rice, mechanical transplanting of rice crop and combinations thereof) with varying effects on soil health, crop productivity, resource saving and global warming mitigation potential. Some of these allow Conservation Agriculture (CA) to be practiced in the rice-based mono-, double- and triple cropping systems. Innovations in machinery especially for smallholder farms have supported the adoption of the new establishment techniques. Non-puddling establishment of rice together with increased crop residue retention increased soil organic carbon by 79% and total N (TN) in soil by 62% relative to conventional puddling practice. Rice establishment methods (direct seeding of rice, system of rice intensification and non-puddled transplanting of rice) improve soil health by improving the physical (reduced bulk density, increased porosity, available water content), chemical (increased phosphorus, potassium and sulphur in their available forms) and biological properties (microbiome structure, microbial biomass C and N) of the soil. Even in the first year of its practice, the non-puddled transplanting method of rice establishment and CA practices for other crops increase the productivity of the rice-based cropping systems. Estimates suggest global warming potential (GWP) (the overall net effect) can be reduced by a quarter by replacing conventional puddling of rice by direct-seeded rice in the Indo-Gangetic Plains for the rice-based cropping system. Moreover, non-puddled transplanting of rice saves 35% of the net life cycle greenhouse gases (GHGs) compared with the conventional practice by a combination of decreasing greenhouse gases emissions from soil and increasing soil organic carbon (SOC). Though the system of rice intensification decreases net GHG emission, the practice releases 1.5 times greater N2O due to the increased soil aeration. There is no single rice establishment technology that is superior to others in all circumstances, rather a range of effective technologies that can be applied to different agro-climates, demography and farm typologies.


Sign in / Sign up

Export Citation Format

Share Document