Effects of ruminal infusion of a slow-release polymer-coated urea or conventional urea on apparent nutrient digestibility, in situ degradability, and rumen parameters in cattle fed low-quality hay

2011 ◽  
Vol 164 (1-2) ◽  
pp. 53-61 ◽  
Author(s):  
S.S. Ribeiro ◽  
J.T. Vasconcelos ◽  
M.G. Morais ◽  
C.B.C.F. Ítavo ◽  
G.L. Franco
2020 ◽  
Vol 118 (3) ◽  
pp. 227-247
Author(s):  
Chelsea K. Janke ◽  
Philip Moody ◽  
Michael J. Bell

AbstractA range of enhanced efficiency fertilizers (EEFs) have been developed in response to widespread recognition of poor nitrogen (N) use efficiency (NUE) in agriculture; however, their effective utilization is not properly understood when applied in sub-surface bands. This study quantified soil chemical changes and the distribution of N species that arose from sub-surface banding of urea, a controlled release polymer-coated urea (PCU) and urea coated with either nitrification inhibitors (NIs) or a urease inhibitor (UI), over 71 days in a field trial. Banding NIs extended the duration of nitrification inhibition for up to 50 days longer than banded urea, although the duration of NI-conferred inhibition was dependant on the rate of NI-urea application. The UI preserved urea-N at a concentration which was 16-fold higher cf. standard urea over 7 days, but no urea-N was detected after 21 days. This suggests that the NUE benefits of UIs are transient when applied in sub-surface bands. Slow release of urea-N from banded PCU resulted in lower concentrations of N in the soil solution. This reduced N dispersal by ca. 50 mm cf. urea, resulting in a N-enriched zone which was considerably smaller. Relatively benign chemical conditions around PCU bands enabled rates of nitrification (NH4–N:NO3–N ratio of 46%) which were similar to urea. Collectively, these results demonstrate the relative efficacy and risks of the different EEF technologies, when applied in fertilizer bands. This knowledge supports the effective utilization of band-applied EEFs for improved NUE in agricultural systems.


1993 ◽  
Vol 1993 (1) ◽  
pp. 449-454 ◽  
Author(s):  
Kenneth Lee ◽  
Gilles H. Tremblay ◽  
E. M. Levy

ABSTRACT In situ biodegradation, the activation of microbial processes capable of destroying contaminants where they are found in the environment, is a biological process that responds rapidly to changing environmental factors. Accordingly, in situ sediment enclosures were used to test the efficacy of selected nutrient formulations to enhance the biodegradation of a waxy crude oil in a low-energy shoreline environment. The addition of soluble inorganic fertilizers (ammonium nitrate and triple superphosphate) and slow-release nutrient formulations (sulfur-coated urea) stimulated microbial activity and prolonged the period of oil degradation, despite a decline in seasonal temperatures. Low temperatures reduced the permeability of the coating on the slow-release fertilizers, effectively suppressing nutrient release. Of the nutrient formulations evaluated, we recommend the application of granular slow-release fertilizers (such as sulfur-coated urea) when the overlying water temperatures are above 15° C, and the application of soluble inorganic fertilizers (such as ammonium nitrate) at lower temperatures. Comprehensive analysis of the experimental results indicate that application protocols for bioremediation (form and type of fertilizer or type and frequency of application), be specifically tailored to account for differences in environmental parameters (including oil characteristics) at each contaminated site.


2021 ◽  
pp. 1-9
Author(s):  
Travis Wayne Shaddox ◽  
Joseph Bryan Unruh

Numerous nitrogen (N) sources are used in turfgrass management and vary from soluble to slow-release. Determining the least expensive N source can be confusing for consumers. Price per ton and price per pound N are common price comparison methods. An improved approach could use longevity of the N source to balance the price. The objective of this study was to determine the longevity of turfgrass response to N sources and to determine the cost to achieve such responses. This study was conducted in Ft. Lauderdale and Jay, FL, from 1 Jan. to 31 Dec. 2018 on ‘Riley’s Super Sport’ (Celebration®) bermudagrass (Cynodon dactylon). Treatments included nontreated turfgrass, urea, ammonium sulfate, stabilized urea, methylene urea, ureaformaldehyde, two natural organics, sulfur-coated urea, and two polymer-coated urea fertilizers. Treatments were arranged in a split-plot design with N sources as whole plots and N rate (N applied at 49 and 98 kg·ha−1 every 4 months) as subplots. Turf quality was recorded on a scale of 1 to 9, where 1 = dead/brown turf and quality, 6 = minimal acceptable, and 9 = optimal healthy/green turf. Turf quality ratings were recorded weekly and used to determine response longevity (days quality ≥6.0) and area under the turfgrass response curve (AUTRC). Urea resulted in response longevity greater than or equal to other N sources during each season except when applied at 98 kg·ha−1 of N during the fall fertilizer cycle in Jay. Natural organics were ≈6-fold more expensive than urea in Jay and Ft. Lauderdale using turfgrass response longevity and AUTRC. Urea and sulfur-coated urea were the least expensive soluble and slow-release N source, respectively, using dollars per pound N, dollars per acre per day, and dollars per acre per quality-day during each fertilizer cycle and annual average in Jay and Ft. Lauderdale. No evidence was found supporting the use of turfgrass response as a more effective method of determining fertilizer cost than dollars per pound N.


2020 ◽  
Vol 13 (2) ◽  
pp. 6
Author(s):  
J. J. Frazão ◽  
A. R. Silva ◽  
F. H. M. Salgado ◽  
R. A. Flores ◽  
E. P. F. Brasil

The increase of the efficiency of the nitrogen fertilization promotes reduction of the applied dose and decreases the losses of nitrogen (N) to the environment. The objective of this work was to evaluate the yield and the relative chlorophyll index (IRC) in cabbage crop under cover fertilization, using enhanced-efficiency nitrogen fertilizers, compared to urea, in variable doses. The experimental design was randomized blocks in a 3x4+1 factorial scheme (three sources, four rates and control), with four replications. The N sources used were: common urea (U), urea treated with urease inhibitor NBPT® (UN) and Kimcoat® polymer coated urea (UK). The N rates used were 0, 40, 80, 160 and 320 kg ha-1, divided in two fertilizations at 20 and 40 days after transplantation. Up to 160 kg ha-1 of N, there was no difference between N sources and N rates for both yield and RCI. The enhanced-efficiency N sources (UN and UK) promoted higher averages compared to common urea, possibly due to the higher N losses from common urea. Thus, the use of urease inhibitors or polymers associated with urea is a promising strategy to improve cabbage yield, as well as reducing N losses to the environment.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 352
Author(s):  
Joshua L. Sloan ◽  
Francis K. Salifu ◽  
Douglass F. Jacobs

Intensively managed forest plantations often require fertilization to maintain site fertility and to improve growth and yield over successive rotations. We applied urea-based “enhanced-efficiency fertilizers” (EEF) containing 0.5 atom% 15N at a rate of 224 kg N ha−1 to soils under mid-rotation black walnut (Juglans nigra L.) plantations to track the fate of applied 15N within aboveground ecosystem components during the 12-month period after application. Treatments included Agrotain Ultra (urea coated with a urease inhibitor), Arborite EC (urea coated with water-soluble boron and phosphate), Agrium ESN (polymer-coated urea), uncoated urea, and an unfertilized control. Agrotain Ultra and Arborite EC increased N concentrations of competing vegetation within one month after fertilization, while neither Agrium ESN nor uncoated urea had any effect on competing vegetation N concentrations during the experiment. Agrotain Ultra and Arborite EC increased δ15N values in leaves of crop trees above those of controls at one and two months after fertilization, respectively. By contrast, Agrium ESN and uncoated urea had no effect on δ15N values in leaves of crop trees until three months after fertilization. Fertilizer N recovery (FNR) varied among ecosystem components, with competing vegetation acting as a sink for applied nutrients. There were no significant differences in FNR for all the urea-based EEF products compared to uncoated urea. Agrium ESN was the only EEF that exhibited controlled-release activity in this study, with other fertilizers behaving similarly to uncoated urea.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lixia Li ◽  
Meng Wang ◽  
Xiandong Wu ◽  
Wenping Yi ◽  
Qiang Xiao

AbstractNanocomposite modification has attracted much attention in improving properties of bio-based polymer coating material for coated fertilizer. Herein two comparable polyhedral oligomeric silsesquioxanes (POSS), with eight poly(ethylene glycol) (PEG) and octaphenyl groups attached to the cage, respectively, were successfully incorporated into thin castor oil-based polyurethane coatings via in-situ polymerization on the urea surface. The nanostructure coatings are environmentally friendly, easy to prepare, and property-tunable. The results show that the vertex group of POSS had a pronounced influence on dispersion level and interaction between polyurethane and POSS that well-tuned the release pattern and period of coated urea, even at the coating rate as low as of 2 wt%. The liquid POSS with long and flexible PEG groups had better compatibility and dispersibility in polyurethane matrix than the solid POSS with rigid octaphenyl groups, as evidenced by SEM/EDS. The unique properties were resulted from the different extents of physical crosslinkings. This modification of bio-based polyurethane coating with POSS provided an alternative method of regulating and controlling the properties of coated fertilizer.


2009 ◽  
Vol 73 (2) ◽  
pp. 375-383 ◽  
Author(s):  
B.R. Golden ◽  
N.A. Slaton ◽  
R.J. Norman ◽  
C.E. Wilson ◽  
R.E. DeLong

Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1713
Author(s):  
Muhammad Awais ◽  
Muhammad Sharif ◽  
Khurram Ashfaq ◽  
Amjad Islam Aqib ◽  
Muhammad Saeed ◽  
...  

A study was carried out to evaluate the effect of single cell protein (SCP) supplement as a protein source on nutrient intake, digestibility, nitrogen balance and in situ digestion kinetics in four Nili Ravi buffalo bulls. Four iso-caloric and iso-nitrogenous concentrates containing 3, 6, 9 and 12% of Saccharomyces cerevisiae-fermented citrus pulp were formulated. All animals were fed a ration with a concentrate/forage ratio of 50:50. Diets were provided ad libitum twice a day as a total mixed ration in a 4 × 4 Latin Square Design. Each experimental period lasted 3 weeks while the overall study 12 weeks. The first 2 weeks of each experimental period were used as adaptation period while the third week as collection period. Chemical composition of fermented citrus pulp appeared as an excellent source of protein. No significant difference was observed on dry matter intake, digestibility of nutrients and SCP among all the treatments. Moreover, no significant effect was observed on ruminal pH and ammonia nitrogen at different times. Rate of disappearance and lag time of in situ dry matter digestion kinetics remained nonsignificant regardless of SCP percentage. Based on results of similar nutrients intake, nutrient digestibility, and ruminal parameters it is concluded that SCP could be used in the concentrate diet of ruminant up to 12%. Furthermore, the SCP has the potential of an alternative protein source in animal diet formulation.


2017 ◽  
Vol 81 (3) ◽  
pp. 546-555 ◽  
Author(s):  
Simone C. Mello ◽  
Yuncong C. Li ◽  
Kati W. Migliaccio ◽  
Eileen P. Linares ◽  
James Colee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document