Role of nitric oxide on quality of freshly ejaculated bull spermatozoa during heparin-induced in vitro capacitation

2009 ◽  
Vol 116 (1-2) ◽  
pp. 38-49 ◽  
Author(s):  
A.C.M.S. Leal ◽  
M.C. Caldas-Bussiere ◽  
C.S. Paes de Carvalho ◽  
K.S. Viana ◽  
C.R. Quirino
Keyword(s):  
Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 420
Author(s):  
Su-Jung Hwang ◽  
Ye-Seul Song ◽  
Hyo-Jong Lee

Kushen (Radix Sophorae flavescentis) is used to treat ulcerative colitis, tumors, and pruritus. Recently, phaseolin, formononetin, matrine, luteolin, and quercetin, through a network pharmacology approach, were tentatively identified as five bioactive constituents responsible for the anti-inflammatory effects of S. flavescentis. However, the role of phaseolin (one of the primary components of S. flavescentis) in the direct regulation of inflammation and inflammatory processes is not well known. In this study, the beneficial role of phaseolin against inflammation was explored in lipopolysaccharide (LPS)-induced inflammation models of RAW 264.7 macrophages and zebrafish larvae. Phaseolin inhibited LPS-mediated production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), without affecting cell viability. In addition, phaseolin suppressed pro-inflammatory mediators such as cyclooxygenase 2 (COX-2), interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and interleukin-6 (IL-6) in a dose-dependent manner. Furthermore, phaseolin reduced matrix metalloproteinase (MMP) activity as well as macrophage adhesion in vitro and the recruitment of leukocytes in vivo by downregulating Ninjurin 1 (Ninj1), an adhesion molecule. Finally, phaseolin inhibited the nuclear translocation of nuclear factor-kappa B (NF-κB). In view of the above, our results suggest that phaseolin could be a potential therapeutic candidate for the management of inflammation.


Author(s):  
Maria Cristina Budani ◽  
Gian Mario Tiboni

Nitric oxide (NO) is formed during the oxidation of L-arginine to L-citrulline by the action of multiple isoenzymes of NO synthase (NOS): neuronal NOS (nNOS), endotelial NOS (eNOS), and inducible NOS (iNOS). NO plays a relevant role in the vascular endothelium, in central and peripheral neurons, and in immunity and inflammatory systems. In addition, several authors showed a consistent contribution of NO to different aspects of the reproductive physiology. The aim of the present review is to analyse the published data on the role of NO within the ovary. It has been demonstrated that the multiple isoenzymes of NOS are expressed and localized in the ovary of different species. More to the point, a consistent role was ascribed to NO in the processes of steroidogenesis, folliculogenesis, and oocyte meiotic maturation in in vitro and in vivo studies using animal models. Unfortunately, there are few nitric oxide data for humans; there are preliminary data on the implication of nitric oxide for oocyte/embryo quality and in-vitro fertilization/embryo transfer (IVF/ET) parameters. NO plays a remarkable role in the ovary, but more investigation is needed, in particular in the context of human ovarian physiology.


2019 ◽  
Vol 70 (17) ◽  
pp. 4557-4570 ◽  
Author(s):  
Salvador González-Gordo ◽  
Rocío Bautista ◽  
M Gonzalo Claros ◽  
Amanda Cañas ◽  
José M Palma ◽  
...  

Abstract Ripening is a complex physiological process that involves changes in reactive nitrogen and oxygen species that govern the shelf-life and quality of fruits. Nitric oxide (NO)-dependent changes in the sweet pepper fruit transcriptome were determined by treating fruits at the initial breaking point stage with NO gas. Fruits were also harvested at the immature (green) and ripe (red) stages. Fruit ripening in the absence of NO resulted in changes in the abundance of 8805 transcripts whose function could be identified. Among these, functional clusters associated with reactive oxygen/nitrogen species and lipid metabolism were significantly modified. NO treatment resulted in the differential expression of 498 genes framed within these functional categories. Biochemical analysis revealed that NO treatment resulted in changes in fatty acid profiling, glutathione and proline contents, and the extent of lipid peroxidation, as well as increases in the activity of ascorbate peroxidase and lipoxygenase. These data provide supporting evidence for the crucial role of NO in the ripening of pepper fruit.


2003 ◽  
Vol 1 (3) ◽  
pp. 113-117 ◽  
Author(s):  
M. Myronidou ◽  
B. Kokkas ◽  
A. Kouyoumtzis ◽  
N. Gregoriadis ◽  
A. Lourbopoulos ◽  
...  

In these studies we investigated if losartan, an AT1- receptor blocker has any beneficial effect on NO production from the bovine aortic preparations in vitro while under stimulation from angiotensin II. Experiments were performed on intact specimens of bovine thoracic aorta, incubated in Dulbeco's MOD medium in a metabolic shaker for 24 hours under 95 % O2 and 5 % CO2 at a temperature of 37°C. We found that angiotensin II 1nM−10 μM does not exert any statistically significant action on NO production. On the contrary, angiotensin II 10nM increases the production of NO by 58.14 % (from 12.16 + 2.9 μm/l to 19.23 + 4.2 μm/l in the presence of losartan 1nM (P<0.05). Nitric oxide levels depend on both rate production and rate catabolism or chemical inactivation. Such an equilibrium is vital for the normal function of many systems including the cardiovascular one. The above results demonstrate that the blockade of AT1-receptors favors the biosynthesis of NO and indicate the protective role of losartan on the vascular wall.


2011 ◽  
Vol 3 ◽  
pp. JCNSD.S5729 ◽  
Author(s):  
Mario F. Juruena ◽  
Eduardo Ponde00C9; De Sena ◽  
Irismar Reis De Oliveira

Nowadays, new schizophrenia treatments are more ambitious than ever, aiming not only to improve psychotic symptoms, but also quality of life and social reinsertion. Our objective is to briefly but critically review the diagnosis of schizophrenia, the atypical antipsychotics sertindole's pharmacology, safety and status, and mainly evaluate the effects of sertindole compared with other second generation antipsychotics for people with schizophrenia and schizophrenia-like psychosis. In vitro studies showed that sertindole exerts a potent antagonism at serotonin 5-HT2A, 5-HT2C, dopamine D2, and αl adrenergic receptors. Sertindole offers an alternative treatment option for refractory patients given its good EPS profile, favorable metabolic profile, and comparable efficacy to risperidone. Due to cardiovascular safety concerns, sertindole is available as a second-line choice for patients intolerant to other antipsychotic agents. Further clinical studies, mainly comparisons with other second-generation antipsychotic agents, are needed to define the role of sertindole in the treatment of schizophrenia.


2020 ◽  
Vol 11 ◽  
Author(s):  
Giulia Lanzolla ◽  
Claudio Marcocci ◽  
Michele Marinò

The balance of the cell redox state is a key point for the maintenance of cellular homeostasis. Increased reactive oxygen species (ROS) generation leads to oxidative damage of tissues, which is involved in the development of several diseases, including autoimmune diseases. Graves’ Orbitopathy (GO) is a disfiguring autoimmune-related condition associated with Graves’ Disease (GD). Patients with active, moderate-to-severe GO, are generally treated with high doses intravenous glucocorticoids (ivGCs) and/or orbital radiotherapy. On the contrary, up to recently, local ointments were the treatment most frequently offered to patients with mild GO, because the risks related to ivGCs does not justify the relatively poor benefits expected in mild GO. However, a medical treatment for these patients is heavily wanted, considering that GO can progress into more severe forms and also patients with mild GO complain with an impairment in their quality of life. Thus, based on the role of oxidative stress in the pathogenesis of GO, a therapy with antioxidant agents has been proposed and a number of studies have been performed, both in vitro and in vivo, which is reviewed here.


1995 ◽  
Vol 110 (1) ◽  
pp. 157-164 ◽  
Author(s):  
William G. Richards ◽  
Jonathan S. Stamler ◽  
Lester Kobzik ◽  
David J. Sugarbaker

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Yu-Tzu Chang ◽  
Chia-Ling Chen ◽  
Chiou-Feng Lin ◽  
Shiou-Ling Lu ◽  
Miao-Huei Cheng ◽  
...  

Group A streptococcus (GAS) imposes a great burden on humans. Efforts to minimize the associated morbidity and mortality represent a critical issue. Glycogen synthase kinase-3β(GSK-3β) is known to regulate inflammatory response in infectious diseases. However, the regulation of GSK-3βin GAS infection is still unknown. The present study investigates the interaction between GSK-3β, NF-κB, and possible related inflammatory mediators in vitro and in a mouse model. The results revealed that GAS could activate NF-κB, followed by an increased expression of inducible nitric oxide synthase (iNOS) and NO production in a murine macrophage cell line. Activation of GSK-3βoccurred after GAS infection, and inhibition of GSK-3βreduced iNOS expression and NO production. Furthermore, GSK-3βinhibitors reduced NF-κB activation and subsequent TNF-αproduction, which indicates that GSK-3βacts upstream of NF-κB in GAS-infected macrophages. Similar to the in vitro findings, administration of GSK-3βinhibitor in an air pouch GAS infection mouse model significantly reduced the level of serum TNF-αand improved the survival rate. The inhibition of GSK-3βto moderate the inflammatory effect might be an alternative therapeutic strategy against GAS infection.


Sign in / Sign up

Export Citation Format

Share Document