Towards analyzing the impact of intrusion prevention and response on cyber-physical system availability: A case study of NPP

2021 ◽  
pp. 108863
Author(s):  
Dipty Tripathi ◽  
Anil Kumar Tripathi ◽  
Lalit Kumar Singh ◽  
Amrita Chaturvedi
Author(s):  
Ming-Chuan Chiu ◽  
Chien-De Tsai ◽  
Tung-Lung Li

Abstract A cyber-physical system (CPS) is one of the key technologies of industry 4.0. It is an integrated system that merges computing, sensors, and actuators, controlled by computer-based algorithms that integrate people and cyberspace. However, CPS performance is limited by its computational complexity. Finding a way to implement CPS with reduced complexity while incorporating more efficient diagnostics, forecasting, and equipment health management in a real-time performance remains a challenge. Therefore, the study proposes an integrative machine-learning method to reduce the computational complexity and to improve the applicability as a virtual subsystem in the CPS environment. This study utilizes random forest (RF) and a time-series deep-learning model based on the long short-term memory (LSTM) networking to achieve real-time monitoring and to enable the faster corrective adjustment of machines. We propose a method in which a fault detection alarm is triggered well before a machine fails, enabling shop-floor engineers to adjust its parameters or perform maintenance to mitigate the impact of its shutdown. As demonstrated in two empirical studies, the proposed method outperforms other times-series techniques. Accuracy reaches 80% or higher 3 h prior to real-time shutdown in the first case, and a significant improvement in the life of the product (281%) during a particular process appears in the second case. The proposed method can be applied to other complex systems to boost the efficiency of machine utilization and productivity.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Nathan T. Hein ◽  
Raju Bheemanahalli ◽  
Dan Wagner ◽  
Amaranatha R. Vennapusa ◽  
Carlos Bustamante ◽  
...  

AbstractWinter wheat (Triticum aestivum L.) is essential to maintain food security for a large proportion of the world’s population. With increased risk from abiotic stresses due to climate variability, it is imperative to understand and minimize the negative impact of these stressors, including high night temperature (HNT). Both globally and at regional scales, a differential rate of increase in day and night temperature is observed, wherein night temperatures are increasing at a higher pace and the trend is projected to continue into the future. Previous studies using controlled environment facilities and small field-based removable chambers have shown that post-anthesis HNT stress can induce a significant reduction in wheat grain yield. A prototype was previously developed by utilizing field-based tents allowing for simultaneous phenotyping of popular winter wheat varieties from US Midwest and advanced breeding lines. Hence, the objectives of the study were to (i) design and build a new field-based infrastructure and test and validate the uniformity of HNT stress application on a scaled-up version of the prototype (ii) improve and develop a more sophisticated cyber-physical system to sense and impose post-anthesis HNT stress uniformly through physiological maturity within the scaled-up tents; and (iii) determine the impact of HNT stress during grain filling on the agronomic and grain quality parameters including starch and protein concentration. The system imposed a consistent post-anthesis HNT stress of + 3.8 °C until maturity and maintained uniform distribution of stress which was confirmed by (i) 0.23 °C temperature differential between an array of sensors within the tents and (ii) statistically similar performance of a common check replicated multiple times in each tent. On average, a reduction in grain-filling duration by 3.33 days, kernel weight by 1.25% per °C, grain number by 2.36% per °C and yield by 3.58% per °C increase in night temperature was documented. HNT stress induced a significant reduction in starch concentration indicating disturbed carbon balance. The pilot field-based facility integrated with a robust cyber-physical system provides a timely breakthrough for evaluating HNT stress impact on large diversity panels to enhance HNT stress tolerance across field crops. The flexibility of the cyber-physical system and movement capabilities of the field-based infrastructure allows this methodology to be adaptable to different crops.


Author(s):  
Lihui Wang ◽  
Robert Gao ◽  
Ihab Ragai

This paper presents an integrated cyber-physical system for remote accessibility and controllability of factory equipment, e.g. CNC machines and robots. It is enabled by combining 3D models, sensor data and camera images in real-time. The aim of this research is to significantly reduce network traffic for much improved accessibility and controllability of any cyber-physical systems over the Internet. The ultimate goal is to build cloud-based services of monitoring, process planning, machining and assembly in decentralised environment. This paper covers the basis of the approach, system architecture and implementation, and a case study of remote control of a robotic assembly cell. Compared with camera-based systems, our approach consumes less than 1% of its network bandwidth, feasible and practical as a future cloud-based solution.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5565 ◽  
Author(s):  
Remigiusz Wisniewski ◽  
Iwona Grobelna ◽  
Andrei Karatkevich

In this paper, we study selected aspects of determinism in the control part of a cyber-physical system (CPS) that is specified by a Petri net-based model. In particular, the control interpreted Petri nets (CIPNs) are applied, which are an extension of the ordinary Petri nets, supplemented by signals (related to sensors and actuators) that permit communication with the environment. The notions of weak and strong determinism in a system described by a CIPN are introduced in the paper. The proposed concepts are supported by formal definitions and theorems. Moreover, a novel modelling methodology for a deterministic system specified by a CIPN is proposed. The presented solutions are illustrated by a case study example of a real-life cyber-physical system. Finally, the results of experimental verification of the proposed determinism-based techniques are demonstrated and discussed.


2019 ◽  
Vol 97 ◽  
pp. 153-167 ◽  
Author(s):  
Jennifer Brings ◽  
Marian Daun ◽  
Torsten Bandyszak ◽  
Vanessa Stricker ◽  
Thorsten Weyer ◽  
...  

2013 ◽  
Vol 664 ◽  
pp. 1035-1040
Author(s):  
Wei Meng ◽  
Zu De Zhou ◽  
Qing Song Ai ◽  
Quan Liu ◽  
Ling Chen

Cyber-physical system (CPS) is a multiple system where physical world operations are monitored and controlled by communication and computing components. This paper focuses on the framework, design and simulation of a CPS for public security applications. A framework of the CPS is presented, and its compositions are analyzed in detail. To meet the requirements of cyber-physical control, the design features of environment perception and communication are investigated. An improved task allocation method and a hybrid approach for path planning are introduced for robots coordination and optimization. Finally, the CPS is demonstrated with a case study in a public security scenario, where robots equipped with sensors cooperate with each other to extinguish fires arising due to a disaster. The simulation experiments are conducted to show the feasibility of such system.


Sign in / Sign up

Export Citation Format

Share Document