Relationship Between Step Length Asymmetry and Walking Performance in Subjects With Chronic Hemiparesis

2007 ◽  
Vol 88 (1) ◽  
pp. 43-49 ◽  
Author(s):  
Chitralakshmi K. Balasubramanian ◽  
Mark G. Bowden ◽  
Richard R. Neptune ◽  
Steven A. Kautz
2008 ◽  
Vol 22 (6) ◽  
pp. 672-675 ◽  
Author(s):  
Mark G. Bowden ◽  
Chitralakshmi K. Balasubramanian ◽  
Andrea L. Behrman ◽  
Steven A. Kautz

Background. For clinical trials in stroke rehabilitation, self-selected walking speed has been used to stratify persons to predict functional walking status and to define clinical meaningfulness of changes. However, this stratification was validated primarily using self-report questionnaires. Objective. This study aims to validate the speed-based classification system with quantitative measures of walking performance. Methods. A total of 59 individuals who had hemiparesis for more than 6 months after stroke participated in this study. Spatiotemporal and kinetic measures included the percentage of total propulsion generated by the paretic leg (Pp), the percentage of the stride length accounted for by the paretic leg step length (PSR), and the percentage of the gait cycle spent in paretic preswing (PPS). Additional measures included the synergy portion of the Fugl-Meyer Assessment and the average number of steps/day in the home and community measured with a step activity monitor. Participants were stratified by self-selected gait speed into 3 groups: household (<0.4 m/s), limited community (0.4-0.8 m/s), and community (>0.8 m/s) ambulators. Group differences were analyzed using a Kruskal—Wallis H test with rank sums test post hoc analyses. Results. Analyses demonstrated a main effect in all measures, but only steps/day and PPS demonstrated a significant difference between all 3 groups. Conclusions. Classifying individuals poststroke by self-selected walking speed is associated with home and community-based walking behavior as quantified by daily step counts. In addition, PPS distinguishes all 3 groups. Pp differentiates the moderate from the fast groups and may represent a contribution to mechanisms of increasing walking speed. Speed classification presents a useful yet simple mechanism to stratify subjects poststroke and may be mechanically linked to changes in PPS.


2021 ◽  
Author(s):  
Gregory Shay

In well documented studies, walking and music have independently shown substantial medical, health, productivity, and other human benefits. When music is combined with walking, and especially when the walking is done in synchrony to the beat, the music can stimulate faster walking without apparent awareness, the “velocity effect”. Some studies have reported that music that is either familiar, more enjoyable, and/or has higher “groove” tends to be more stimulating, and that some music can actually be sedating resulting in a slower speed relative to that of walking to a metronome at the same cadence. Research illuminating the velocity effect has mostly been conducted over relatively short stepping distances in a laboratory or similar outdoor setting. The current study examines walking on a real-world long distance outdoor track with a single genre of music that was at least somewhat familiar and somewhat enjoyable to the test subject. In this study, the test subject stepped in self-instructed synchrony with confirmed high accuracy to two types of auditory stimuli – either to the beat of a metronome (a presumed neutral source or what might be considered a most rudimentary form of music), or to the beat of a broad-spectrum of country music continuously over a 2-mile course. Nine metronome tempos and twenty-one country music tempos were examined in a walkable range of 90 to 130 beats per minute (BPM), and the effects of the music and metronome on walking performance were examined and quantified. Overall, the mix of country music was significantly more energizing than the metronome providing a relatively consistent 10% increase in step length and a resulting 10% increase in speed over the entire tempo/cadence range. Speed as a function of tempo was essentially linear in the beat range for both auditory stimuli with an apparent increase in speed relative to the trendlines occurring near 120 BPM, a preferred human response frequency reported in some prior investigations.


2019 ◽  
Vol 122 (1) ◽  
pp. 277-289 ◽  
Author(s):  
Jessica L. Allen ◽  
Trisha M. Kesar ◽  
Lena H. Ting

Muscle coordination is often impaired after stroke, leading to deficits in the control of walking and balance. In this study, we examined features of muscle coordination associated with reduced walking performance in chronic stroke survivors using motor module (a.k.a. muscle synergy) analysis. We identified differences between stroke survivors and age-similar neurotypical controls in the modular control of both overground walking and standing reactive balance. In contrast to previous studies that demonstrated reduced motor module number poststroke, our cohort of stroke survivors did not exhibit a reduction in motor module number compared with controls during either walking or reactive balance. Instead, the pool of motor modules common to walking and reactive balance was smaller, suggesting reduced generalizability of motor module function across behaviors. The motor modules common to walking and reactive balance tended to be less variable and more distinct, suggesting more reliable output compared with motor modules specific to either behavior. Greater motor module generalization in stroke survivors was associated with faster walking speed, more normal step length asymmetry, and narrower step widths. Our work is the first to show that motor module generalization across walking and balance may help to distinguish important and clinically relevant differences in walking performance across stroke survivors that would have been overlooked by examining only a single behavior. Finally, because similar relationships between motor module generalization and walking performance have been demonstrated in healthy young adults and individuals with Parkinson’s disease, this suggests that motor module generalization across walking and balance may be important for well-coordinated walking. NEW & NOTEWORTHY This is the first work to simultaneously examine neuromuscular control of walking and standing reactive balance in stroke survivors. We show that motor module generalization across these behaviors (i.e., recruiting common motor modules) is reduced compared with controls and is associated with slower walking speeds, asymmetric step lengths, and larger step widths. This is true despite no between-group differences in module number, suggesting that motor module generalization across walking and balance is important for well-coordinated walking.


Author(s):  
Seung-Jae Kim ◽  
Hermano Igo Krebs

Gait rehabilitation promotes the reduction of gait deficits resulting from neurological pathologies by enhancing activity-dependent plasticity in the central nervous system. To maximize the therapeutic benefit of gait training, the key components appear to be subjects’ active participation and intensity. In this paper we discuss a performance-based training scheme for a novel gait trainer (MIT-Skywalker) that can challenge patients by systematically adjusting the treadmill speed and visual feedback. In our algorithm, the speed is adjusted based on gait performance of step length symmetry and subject’s ability to cope with the treadmill speed. Computer simulations demonstrate that the gait speed controller adapts to changes in walking performance, suggesting a potential scheme for gait therapy.


Medicina ◽  
2021 ◽  
Vol 57 (5) ◽  
pp. 457
Author(s):  
Neil D. Reeves ◽  
Giorgio Orlando ◽  
Steven J. Brown

Diabetic peripheral neuropathy (DPN) is associated with peripheral sensory and motor nerve damage that affects up to half of diabetes patients and is an independent risk factor for falls. Clinical implications of DPN-related falls include injury, psychological distress and physical activity curtailment. This review describes how the sensory and motor deficits associated with DPN underpin biomechanical alterations to the pattern of walking (gait), which contribute to balance impairments underpinning falls. Changes to gait with diabetes occur even before the onset of measurable DPN, but changes become much more marked with DPN. Gait impairments with diabetes and DPN include alterations to walking speed, step length, step width and joint ranges of motion. These alterations also impact the rotational forces around joints known as joint moments, which are reduced as part of a natural strategy to lower the muscular demands of gait to compensate for lower strength capacities due to diabetes and DPN. Muscle weakness and atrophy are most striking in patients with DPN, but also present in non-neuropathic diabetes patients, affecting not only distal muscles of the foot and ankle, but also proximal thigh muscles. Insensate feet with DPN cause a delayed neuromuscular response immediately following foot–ground contact during gait and this is a major factor contributing to increased falls risk. Pronounced balance impairments measured in the gait laboratory are only seen in DPN patients and not non-neuropathic diabetes patients. Self-perception of unsteadiness matches gait laboratory measures and can distinguish between patients with and without DPN. Diabetic foot ulcers and their associated risk factors including insensate feet with DPN and offloading devices further increase falls risk. Falls prevention strategies based on sensory and motor mechanisms should target those most at risk of falls with DPN, with further research needed to optimise interventions.


Life ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 550
Author(s):  
Roberto Sanchis-Sanchis ◽  
Alberto Encarnación-Martínez ◽  
Jose I. Priego-Quesada ◽  
Inmaculada Aparicio ◽  
Irene Jimenez-Perez ◽  
...  

Amateur runners usually run carrying implements in their hands (keys, a mobile phone, or a bottle of water). However, there is a lack of literature about the effects of different handloads on impact accelerations. Thus, this study aimed to analyse the effects of carrying different objects in the hand on impact accelerations during running. Nineteen male recreational runners (age 24.3 ± 6.8 years, training volume of 25 ± 7.38 km/week) performed twenty minutes of running on a treadmill at 2.78 m/s with four different conditions: no extra weight, with keys, with a mobile phone, and with a bottle of water. Impact acceleration and spatio-temporal parameters were analysed through a wireless triaxial accelerometry system composed of three accelerometers: two placed in each tibia and one placed on the forehead. A higher tibia acceleration rate in the dominant leg was observed when participants ran holding both a mobile phone (p = 0.027; ES = 0.359) and a bottle of water (p = 0.027; ES = 0.359), compared to no extra weight. No changes were observed in peak acceleration, acceleration magnitude, and shock attenuation in any other conditions. Likewise, neither stride frequency nor step length was modified. Our results suggest that recreational runners should not worry about carrying objects in their hands, like a mobile phone or a bottle of water, in short races because their effect seems minimal.


2020 ◽  
Vol 17 (6) ◽  
pp. 172988142097634
Author(s):  
Huan Tran Thien ◽  
Cao Van Kien ◽  
Ho Pham Huy Anh

This article proposes a new stable biped walking pattern generator with preset step-length value, optimized by multi-objective JAYA algorithm. The biped robot is modeled as a kinetic chain of 11 links connected by 10 joints. The inverse kinematics of the biped is applied to derive the specified biped hip and feet positions. The two objectives related to the biped walking stability and the biped to follow the preset step-length magnitude have been fully investigated and Pareto optimal front of solutions has been acquired. To demonstrate the effectiveness and superiority of proposed multi-objective JAYA, the results are compared to those of MO-PSO and MO-NSGA-2 optimization approaches. The simulation and experiment results investigated over the real small-scaled biped HUBOT-4 assert that the multi-objective JAYA technique ensures an outperforming effective and stable gait planning and walking for biped with accurate preset step-length value.


2021 ◽  
Vol 11 (5) ◽  
pp. 2093
Author(s):  
Noé Perrotin ◽  
Nicolas Gardan ◽  
Arnaud Lesprillier ◽  
Clément Le Goff ◽  
Jean-Marc Seigneur ◽  
...  

The recent popularity of trail running and the use of portable sensors capable of measuring many performance results have led to the growth of new fields in sports science experimentation. Trail running is a challenging sport; it usually involves running uphill, which is physically demanding and therefore requires adaptation to the running style. The main objectives of this study were initially to use three “low-cost” sensors. These low-cost sensors can be acquired by most sports practitioners or trainers. In the second step, measurements were taken in ecological conditions orderly to expose the runners to a real trail course. Furthermore, to combine the collected data to analyze the most efficient running techniques according to the typology of the terrain were taken, as well on the whole trail circuit of less than 10km. The three sensors used were (i) a Stryd sensor (Stryd Inc. Boulder CO, USA) based on an inertial measurement unit (IMU), 6 axes (3-axis gyroscope, 3-axis accelerometer) fixed on the top of the runner’s shoe, (ii) a Global Positioning System (GPS) watch and (iii) a heart belt. Twenty-eight trail runners (25 men, 3 women: average age 36 ± 8 years; height: 175.4 ± 7.2 cm; weight: 68.7 ± 8.7 kg) of different levels completed in a single race over a 8.5 km course with 490 m of positive elevation gain. This was performed with different types of terrain uphill (UH), downhill (DH), and road sections (R) at their competitive race pace. On these sections of the course, cadence (SF), step length (SL), ground contact time (GCT), flight time (FT), vertical oscillation (VO), leg stiffness (Kleg), and power (P) were measured with the Stryd. Heart rate, speed, ascent, and descent speed were measured by the heart rate belt and the GPS watch. This study showed that on a ≤10 km trail course the criteria for obtaining a better time on the loop, determined in the test, was consistency in the effort. In a high percentage of climbs (>30%), two running techniques stand out: (i) maintaining a high SF and a short SL and (ii) decreasing the SF but increasing the SL. In addition, it has been shown that in steep (>28%) and technical descents, the average SF of the runners was higher. This happened when their SL was shorter in lower steep and technically challenging descents.


Author(s):  
Heidi Nedergård ◽  
Ashokan Arumugam ◽  
Marlene Sandlund ◽  
Anna Bråndal ◽  
Charlotte K. Häger

Abstract Background Robotic-Assisted Gait Training (RAGT) may enable high-intensive and task-specific gait training post-stroke. The effect of RAGT on gait movement patterns has however not been comprehensively reviewed. The purpose of this review was to summarize the evidence for potentially superior effects of RAGT on biomechanical measures of gait post-stroke when compared with non-robotic gait training alone. Methods Nine databases were searched using database-specific search terms from their inception until January 2021. We included randomized controlled trials investigating the effects of RAGT (e.g., using exoskeletons or end-effectors) on spatiotemporal, kinematic and kinetic parameters among adults suffering from any stage of stroke. Screening, data extraction and judgement of risk of bias (using the Cochrane Risk of bias 2 tool) were performed by 2–3 independent reviewers. The Grading of Recommendations Assessment Development and Evaluation (GRADE) criteria were used to evaluate the certainty of evidence for the biomechanical gait measures of interest. Results Thirteen studies including a total of 412 individuals (mean age: 52–69 years; 264 males) met eligibility criteria and were included. RAGT was employed either as monotherapy or in combination with other therapies in a subacute or chronic phase post-stroke. The included studies showed a high risk of bias (n = 6), some concerns (n = 6) or a low risk of bias (n = 1). Meta-analyses using a random-effects model for gait speed, cadence, step length (non-affected side) and spatial asymmetry revealed no significant differences between the RAGT and comparator groups, while stride length (mean difference [MD] 2.86 cm), step length (affected side; MD 2.67 cm) and temporal asymmetry calculated in ratio-values (MD 0.09) improved slightly more in the RAGT groups. There were serious weaknesses with almost all GRADE domains (risk of bias, consistency, directness, or precision of the findings) for the included outcome measures (spatiotemporal and kinematic gait parameters). Kinetic parameters were not reported at all. Conclusion There were few relevant studies and the review synthesis revealed a very low certainty in current evidence for employing RAGT to improve gait biomechanics post-stroke. Further high-quality, robust clinical trials on RAGT that complement clinical data with biomechanical data are thus warranted to disentangle the potential effects of such interventions on gait biomechanics post-stroke.


Sign in / Sign up

Export Citation Format

Share Document