Influence of a step-change in metal exposure (Cd, Cu, Zn) on metal accumulation and subcellular partitioning in a freshwater bivalve, Pyganodon grandis: A long-term transplantation experiment between lakes with contrasting ambient metal levels

2013 ◽  
Vol 132-133 ◽  
pp. 73-83 ◽  
Author(s):  
Sophie Cooper ◽  
Emmanuelle Bonneris ◽  
Annick Michaud ◽  
Bernadette Pinel-Alloul ◽  
Peter G.C. Campbell
1995 ◽  
Vol 52 (4) ◽  
pp. 690-702 ◽  
Author(s):  
Y. Couillard ◽  
P. G. C. Campbell ◽  
A. Tessier ◽  
J. C. Auclair ◽  
J. Pellerin-Massicotte

To test the response of the freshwater bivalve Pyganodon grandis (formerly Anodonta grandis) to increased metal exposure in the field, we transferred specimens (8 cm length; 4–6 years old) from a less to a more contaminated lake in the mining area of Rouyn-Noranda, in northwestern Québec. The transplanted bivalves were maintained in open enclosures placed in the bottom sediments of the contaminated lake. Up to 16 individuals were removed from pairs of enclosures at times t = 0 (June 1990), 5, 14, 30, 60, 90, and 400 d; tissue concentrations of metallothionein (MT) and metals were monitored over time. Measurements on control molluscs enclosed in their lake of origin showed that enclosure per se had no apparent effect on tissue [MT] or tissue metal levels, but did decrease shell growth. Metallothionein levels in specimens transplanted to the more contaminated lake showed a slow but steady increase with time; in contrast, MT levels in the control populations showed only modest seasonal fluctuations. The increase in MT over time in the transplanted bivalves was closely correlated with a similar slow increase in soft tissue [Cd]. We conclude that MT in the freshwater bivalve P. grandis is a promising biochemical indicator of metal exposure.


2014 ◽  
Vol 0 (0) ◽  
Author(s):  
Nurul Hafiza Ab Razak ◽  
Sarva Mangala Praveena ◽  
Zailina Hashim

AbstractToenail is metabolic end product of the skin, which can provide information about heavy metal accumulation in human cells. Slow growth rates of toenail can represent heavy metal exposure from 2 to 12 months before the clipping. The toenail is a non-invasive biomarker that is easy to collect and store and is stable over time. In this systematic review, the suitability of toenail as a long-term biomarker was reviewed, along with the analysis and validation of toenail and confounders to heavy metal. This systematic review has included 30 articles chosen from a total of 132 articles searched from online electronic databases like Pubmed, Proquest, Science Direct, and SCOPUS. Keywords used in the search included “toenail”, “biomarker”, “heavy metal”, and “drinking water”. Heavy metal in toenail can be accurately analyzed using an ICP-MS instrument. The validation of toenail heavy metal concentration data is very crucial; however, the Certified Reference Material (CRM) for toenail is still unavailable. Usually, CRM for hair is used in toenail studies. Confounders that have major effects on heavy metal accumulation in toenail are dietary intake of food and supplement, smoking habit, and overall health condition. This review has identified the advantages and limitations of using toenail as a biomarker for long-term exposure, which can help future researchers design a study on heavy metal exposure using toenail.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2245
Author(s):  
Manal A. Alnaimy ◽  
Sahar A. Shahin ◽  
Zuzana Vranayova ◽  
Martina Zelenakova ◽  
Enas Mohamed Wagdi Abdel-Hamed

There is consensus on the impact of wastewater irrigation on soil properties and heavy metal accumulation. The studies that show the impact of temporal changes as a result of different long-term additions of wastewater on the heavy metal accumulation and degradation of soil are extremely limited. This study was carried out to assess heavy metal contamination in soils irrigated with wastewater for more than 30 years in Egypt. A total number of 12 irrigation water samples and 12 soil profiles were collected during 2020 and were chemically characterized. The results showed that soils irrigated with wastewater over the long term contained significantly higher concentrations of heavy metals compared to fields irrigated with fresh water. Heavy metal levels in water and soil samples were within the permissible limits, with the exception of Cd concentration in water (0.03 mg L−1). Continuous cultivation for a long period of time (30 years) using raw urban wastewater application has led to the adverse effect of increasingly available Pb concentration (5.44 mg kg−1). Similar temporal behavior was seen for Cd and Fe, which increased by 0.98 and 11.2 mg kg−1, respectively, after 30 years. The heavy metals in wastewater-irrigated soils significantly increased in clayey soils, as compared to sandy soils irrigated from the same source. Our findings provide important information for decision makers in Egypt and similar countries for the development of a strategy for the use of wastewater in irrigation for sustainable agricultural management.


1999 ◽  
Vol 56 (5) ◽  
pp. 774-784 ◽  
Author(s):  
Dacheng Wang ◽  
Yves Couillard ◽  
G C Campbell ◽  
Pierre Jolicoeur

To test the response of the freshwater bivalve Pyganodon grandis to increased metal exposure in the field, specimens were collected from 10 lakes located along a known metal gradient in a mining area in northwestern Québec. Total gill concentrations of metallothionein (MT) were determined by the 203Hg saturation method for molluscs from each lake, and the distribution of Cd among various cytosolic ligands, including MT, was determined by size-exclusion chromatography. Gill MT concentrations responded to environmental exposure to Cd but not to Cu or Zn exposure; these spatial variations along the Cd gradient were more important than the seasonal summer variations in gill MT concentrations. Bivalves exposed to concentrations of dissolved free Cd2+ higher than ~1 nM in the external medium exhibited a marked increase of Cd in the low relative molecular mass ligand pool. Symptoms of toxic effects at different levels of biological organization were associated with this biochemical anomaly.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Elijah Abakpa Adegbe ◽  
Oluwaseyi Oluwabukola Babajide ◽  
Lois Riyo Maina ◽  
Shola Elijah Adeniji

Abstract Background Heavy metal accumulation in the ecosystem constitutes a potential toxic effect which is hazardous to human health. Increasing environmental pollution has necessitated the use of cattle egrets to evaluate the levels of heavy metal contamination, to establish their use in biomonitoring of heavy metals and to provide data for monitoring pollution in the environment. Results The present study assessed the utilization of Bubulcus ibis in monitoring pollution in five abattoirs, namely Agege, Bariga, Kara, Itire and Idi-Araba, all situated in Lagos State. The concentration of five (5) heavy metals, cadmium (Cd), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) was determined in the liver, muscle and feather of Bubulcus ibis using the atomic absorption spectrophotometer. The trend of metal accumulation was in the order: Zn > Cu > Pb > Cd > Ni for all the sampled tissues. The mean tissue concentrations of the metals were significantly different (p < 0.05) among the sites. The highest levels of metal concentration were reported in the liver in all the locations. Mean concentration of Cd in Kara (0.003 ± 0.00058) was significantly (p < 0.05) higher than those found at Agege (0.0013 ± 0.00058) and Idi-Araba (0.001 ± 0.001). A significant difference (p < 0.05) was also observed between the mean concentrations of Cu in Bariga (0.01 ± 0.001) and Idi-Araba (0.003 ± 0.001). Conclusion All the studied heavy metals were present in the liver, muscle and feathers of the cattle egrets. The contamination levels were ascertained from the study which indicated that cattle egrets are useful in biomonitoring studies and the generated data will serve as baseline data which could be compared with data from other locations for monitoring heavy metal pollution.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1394 ◽  
Author(s):  
Marsha Putri ◽  
Chao-Hsun Lou ◽  
Mat Syai’in ◽  
Shang-Hsin Ou ◽  
Yu-Chun Wang

The application of multivariate statistical techniques including cluster analysis and principal component analysis-multiple linear regression (PCA-MLR) was successfully used to classify the river pollution level in Taiwan and identify possible pollution sources. Water quality and heavy metal monitoring data from the Taiwan Environmental Protection Administration (EPA) was evaluated for 14 major rivers in four regions of Taiwan with the Erren River classified as the most polluted river in the country. Biochemical oxygen demand (6.1 ± 2.38), ammonia (3.48 ± 3.23), and total phosphate (0.65 ± 0.38) mg/L concentration in this river was the highest of the 14 rivers evaluated. In addition, heavy metal levels in the following rivers exceeded the Taiwan EPA standard limit (lead: 0.01, copper: 0.03, and manganese: 0.03) mg/L concentration: lead-in the Dongshan (0.02 ± 0.09), Jhuoshuei (0.03 ± 0.03), and Xinhuwei Rivers (0.02 ± 0.02) mg/L; copper: in the Dahan (0.036 ± 0.097), Laojie (0.06 ± 1.77), and Erren Rivers are (0.05 ± 0.158) mg/L; manganese: in all rivers. A total 72% of the water pollution in the Erren River was estimated to originate from industrial sources, 16% from domestic black water, and 12% from natural sources and runoff from other tributaries. Our research demonstrated that applying PCA-MLR and cluster analysis on long-term monitoring water quality would provide integrated information for river water pollution management and future policy making.


2005 ◽  
Vol 71 (4) ◽  
pp. 319-334 ◽  
Author(s):  
Emmanuelle Bonneris ◽  
Anik Giguère ◽  
Olivier Perceval ◽  
Thierry Buronfosse ◽  
Stéphane Masson ◽  
...  

Toxics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 124
Author(s):  
Tapio Eeva ◽  
Nelli Raivikko ◽  
Silvia Espín ◽  
Pablo Sánchez-Virosta ◽  
Suvi Ruuskanen ◽  
...  

Bird feces are commonly used as a proxy for measuring dietary metal exposure levels in wild populations. Our study aims to improve the reliability and repeatability of fecal metal measurements and gives some recommendations for sampling. First, we studied levels of variation in metallic element (arsenic, calcium, cadmium, cobalt, copper, nickel, lead) concentrations: temporal variation within an individual, among siblings in a brood and among-brood/spatial variation. Second, we explored the variation caused by dual composition (urate vs. feces) of bird droppings. Two sets of fresh fecal samples were collected from pied flycatcher (Ficedula hypoleuca) nestlings living in a metal polluted area in summers 2017 (dataset 1) and 2018 (dataset 2). We found a great deal of temporal intra-individual variation in metal levels, suggesting that dietary exposure varied markedly in a short time scale (within a day). A sample from only one nestling per brood did not well describe the brood mean value, and we recommend that at least four siblings should be sampled. Brood level samples give relatively good temporal repeatability for most metals. For all the metals, the levels in the fecal portion were more than double to those in the urate portion. Since the mass proportion of urate in the bird droppings varied a great deal among samples, standardizing sampling, e.g., by collecting only the fecal part, would markedly reduce the variation due to composition. Alternatively, urate portion could be used for biomonitoring of internally circulated bioavailable metal.


Sign in / Sign up

Export Citation Format

Share Document