Effects of radiative forcing by black carbon aerosol on spring rainfall decrease over Southeast Asia

2010 ◽  
Vol 44 (31) ◽  
pp. 3739-3744 ◽  
Author(s):  
Woo-Seop Lee ◽  
Maeng-Ki Kim
2017 ◽  
Author(s):  
Didin Agustian Permadi ◽  
Nguyen Thi Kim Oanh ◽  
Robert Vautard

Abstract. Following Part 1 (Permadi et al., 2017a) which focuses on the preparation of emission input data and evaluation of WRF/CHIMERE performance in 2007, this paper presents Part 2 of our research detailing the quantification of co-benefits resulted in the future (2030) from black carbon (BC) emission reduction measures for Southeast Asia (SEA) countries. The business as usual (BAU2030) projected emissions from the base year of 2007 (BY2007) assuming no intervention with the linear projection of the emissions based on the past decadal activity data (Indonesia and Thailand) and the sectoral GDP growth for other countries. The RED2030 featured measures to cut down emission in major four source sectors in Indonesia and Thailand (on-road transport, residential cooking, industry, and biomass open burning) while for other countries the representative concentration pathway 8.5 (RCP8.5) emissions were assumed. WRF/CHIMERE simulated levels of aerosol species under BAU2030 and RED2030 for the SEA domain using the base year meteorology and 2030 boundary conditions from LMDZ/INCA. The extended aerosol optical depth module (AODEM) calculated the total columnar AOD and BC AOD assuming the internal mixing state for the two future scenarios. Health benefits were analyzed in term of the avoided number of premature deaths associated with ambient PM2.5 reduction while the climate benefits were quantified using the reduction in the BC radiative forcing under RED2030. Under BAU2030, the average number of the premature deaths per 100,000 population in the domain would increase by 30 from BY2007 while under RED2030 the premature deaths would be cut-down (avoided) by 59 from the RED2030. In 2007, the maximum annual average BC radiative forcing in SEA countries was 0.98 W m−2 which would increase to 2.0 W m−2 under BAU2030 and 1.4 W m−2 under RED2030. Substantial co-benefits on human health and BC climate forcing reduction in SEA could be resulted from the emission measures incorporated in RED2030. Future works should consider other benefits such as for the agricultural crop production, and the cost benefit analysis of the measures implementation to provide relevant information for policy making.


2020 ◽  
Vol 257 ◽  
pp. 113446 ◽  
Author(s):  
Yogesh Kant ◽  
Darga Saheb Shaik ◽  
Debashis Mitra ◽  
H.C. Chandola ◽  
S. Suresh Babu ◽  
...  

2018 ◽  
Vol 18 (5) ◽  
pp. 3321-3334 ◽  
Author(s):  
Didin Agustian Permadi ◽  
Nguyen Thi Kim Oanh ◽  
Robert Vautard

Abstract. Our previously published paper (Permadi et al. 2018) focused on the preparation of emission input data and evaluation of WRF–CHIMERE performance in 2007. This paper details the impact assessment of the future (2030) black carbon (BC) emission reduction measures for Southeast Asia (SEA) countries on air quality, health and BC direct radiative forcing (DRF). The business as usual (BAU2030) projected emissions from the base year of 2007 (BY2007), assuming “no intervention” with the linear projection of the emissions based on the past activity data for Indonesia and Thailand and the sectoral GDP growth for other countries. The RED2030 featured measures to cut down emissions in major four source sectors in Indonesia and Thailand (road transport, residential cooking, industry, biomass open burning) while for other countries the Representative Concentration Pathway 8.5 (RCP8.5) emissions were assumed. WRF–CHIMERE simulated levels of aerosol species under BAU2030 and RED2030 for the modeling domain using the base year meteorology and 2030 boundary conditions from LMDZ-INCA. The extended aerosol optical depth module (AODEM) calculated the total columnar AOD and BC AOD for all scenarios with an assumption on the internal mixing state. Under RED2030, the health benefits were analyzed in terms of the number of avoided premature deaths associated with ambient PM2.5 reduction along with BC DRF reduction. Under BAU2030, the average number of the premature deaths per 100 000 people in the SEA domain would increase by 30 from BY2007 while under RED2030 the premature deaths would be cut down (avoided) by 63 from RED2030. In 2007, the maximum annual average BC DRF in the SEA countries was 0.98 W m−2, which would increase to 2.0 W m−2 under BAU2030 and 1.4 W m−2 under RED2030. Substantial impacts on human health and BC DRF reduction in SEA could result from the emission measures incorporated in RED2030. Future works should consider other impacts, such as for agricultural crop production, and the cost–benefit analysis of the measures' implementation to provide relevant information for policy making.


2017 ◽  
Author(s):  
Ruchen Zhu ◽  
Huixiang Wang ◽  
Xiaoyan Wang ◽  
Hao Liu

Abstract. Black carbon (BC) aerosol has strong radiative forcing and plays an important role in global climate change and human health. A generator with low levels of BC-air is developed in this study for researchers to calibrate BC monitors. Ultrasonic nozzle is applied to atomize BC suspension to produce quantificational BC-air samples which can be used directly as a standard source of BC. Membrane test conducted by balance is used to check up its feasibility. Results show that the relationship of weight increment of membrane and target concentration of BC-air have very good linearity. This confirms that the ultrasonic spray system is a good source to generate standard concentration of BC-air. The device has good feasibility in the BC concentrations range of 0–200 μg m−3. Multi Angle Absorption Photometer (MAAP) is used to detect the concentration of BC-air generated by the ultrasonic spray of suspension. Target concentrations generated by the device accord with the measured data of MAAP.


2020 ◽  
Author(s):  
Bingliang Zhuang ◽  
Tijian Wang ◽  
Shu Li ◽  
Min Xie ◽  
Mengmeng Li ◽  
...  

<p>Black carbon aerosol (BC) has a significant influence on regional climate changes due to its warming effect. Such changes will feedback to BC loadings. Here, the interactions between the BC warming effect and East Asian monsoon (EAM) in both winter (EAWM) and summer (EASM) are investigated using a regional climate model RegCM4, which essentially captures the EAM features and the BC variations in China. The seasonal mean BC optical depth is 0.021 over East Asia during winter, which is 10.5% higher than that during summer. Nevertheless, the BCs direct radiative forcing is 32% stronger during summer (+1.85 W/m<sup>2</sup>). The BC direct effect would induce lower air to warm by 0.11-0.12 K, which causes an meridional circulation anomaly associated with a cyclone at 20-30 <sup>o</sup>N and southerly anomalies at 850 hPa over East Asia. Consequently, the EAM circulation is weakened during winter but enhanced during summer. Precipitation is likely increased, especially in south China during summer (by 3.73%). Compared to BC changes due to EAM interannual variations, BC changes due to its warming effect are as important, but weaker. BC surface concentrations are decreased by 1~3% during both winter and summer, by 1~3%, while the columnar BC is increased in south China during winter. During the strongest monsoon years, the BC loadings are higher at lower latitudes than those during the weakest years, resulting in more southerly meridional circulation anomalies and BC feedbacks during both winter and summer. However, the interactions between the BC warming effect and EAWM/EASM are more intense during the weakest monsoon years.</p>


2018 ◽  
Vol 31 (22) ◽  
pp. 9367-9388 ◽  
Author(s):  
B. L. Zhuang ◽  
S. Li ◽  
T. J. Wang ◽  
J. Liu ◽  
H. M. Chen ◽  
...  

AbstractBlack carbon aerosol (BC) has a significant influence on regional climate changes because of its warming effect. Such changes will feed back to BC loadings. Here, the interactions between the BC warming effect and the East Asian monsoon (EAM) in both winter (EAWM) and summer (EASM) are investigated using a regional climate model, RegCM4, that essentially captures the EAM features and the BC variations in China. The seasonal mean BC optical depth is 0.021 over East Asia during winter, which is 10.5% higher than that during summer. Nevertheless, the BC direct radiative forcing is 32% stronger during summer (+1.85 W m−2). The BC direct effect would induce lower air to warm by 0.11–0.12 K, which causes a meridional circulation anomaly associated with a cyclone at 20°–30°N and southerly anomalies at 850 hPa over East Asia. Consequently, the EAM circulation is weakened during winter but enhanced during summer. Precipitation is likely increased, especially in southern China during summer (by 3.73%). Relative to BC changes that result from EAM interannual variations, BC changes from its warming effect are as important but are weaker. BC surface concentrations are decreased by 1%–3% during both winter and summer, whereas the columnar BC is increased in south China during winter. During the strongest monsoon years, the BC loadings are higher at lower latitudes than those during the weakest years, resulting in more southerly meridional circulation anomalies and BC feedbacks during both winter and summer. However, the interactions between the BC warming effect and EAWM/EASM are more intense during the weakest monsoon years.


1970 ◽  
Vol 8 (3) ◽  
pp. 1-10 ◽  
Author(s):  
AK Srivastava ◽  
P Pant ◽  
UC Dumka ◽  
P Hegde

Ground-based measurements of aerosol black carbon (BC), from a high altitude location at Nainital in the central Himalayas (during June 2006 to May 2007), were used to study its temporal variability and impact on the atmospheric radiative forcing. Diurnal variation of BC mass concentration shows single enhanced peak in the late afternoon hour. The peak is rather pronounced in winter months due to shallow and stable boundary layer condition, which is largely associated with low surface temperature. The mean BC mass concentrations were found to be as ~0.6 (±0.2), 1.4 (±0.1), 1.2 (±0.3) and 1.5 (±0.2) μg m-3 during monsoon, post-monsoon, winter and spring periods, respectively while its maximum value was ~1.8 (±0.8) μg m-3 during April. The prevailing winds revealed to facilitates the transport of BC from the distant sources to the observing site. A radiative transfer model was used in conjunction with an aerosol optical model to estimate the BC radiative forcing over the station. Results show BC forcing at the top-of-atmosphere (TOA), surface and in the atmosphere varies between about +3 to +7, -6 to -14 and +8 to +21 Wm-2, respectively which is more pronounced during spring then during monsoon depending upon BC mass loading. The positive atmosphere forcing represents a considerable amount of heating to the lower atmosphere and has been conjectured as potential factor causing global warming. The estimated heating rate of the lower atmosphere over the station was found to be ranging from 0.24 Kday-1 during monsoon to 0.58 Kday-1 during spring season. DOI: http://dx.doi.org/10.3126/jie.v8i3.5926 JIE 2011; 8(3): 1-10


Sign in / Sign up

Export Citation Format

Share Document