Impacts of mineral dust on ice clouds in tropical deep convection systems

2014 ◽  
Vol 143 ◽  
pp. 64-72 ◽  
Author(s):  
Q.-L. Min ◽  
R. Li ◽  
B. Lin ◽  
E. Joseph ◽  
V. Morris ◽  
...  
2021 ◽  
Author(s):  
Andries Jan de Vries ◽  
Franziska Aemisegger ◽  
Stephan Pfahl ◽  
Heini Wernli

Abstract. Tropical ice clouds have an important influence on the Earth’s radiative balance. They often form as a result of tropical deep convection, which strongly affects the water budget of the tropical tropopause layer. Ice cloud formation involves complex interactions on various scales, which are not fully understood yet and lead to large uncertainties in climate predictions. In this study, we investigate the formation of tropical ice clouds related to deep convection in the West African monsoon, using stable water isotopes as tracers of moist atmospheric processes. We perform simulations using the regional isotope-enabled model COSMOiso with different resolutions and treatments of convection for the period of June–July 2016. First, we evaluate the ability of our simulations to represent the isotopic composition of monthly precipitation through comparison with GNIP observations, and the precipitation characteristics related to the monsoon evolution and convective storms based on insights from the DACCIWA field campaign in 2016. Next, a case study of a mesoscale convective system (MCS) explores the isotope signatures of tropical deep convection in atmospheric water vapour and ice. Convective updrafts within the MCS inject enriched ice into the upper troposphere leading to depletion of vapour within these updrafts due to the preferential condensation and deposition of heavy isotopes. Water vapour in downdrafts within the same MCS are enriched by non-fractionating sublimation of ice. In contrast to ice within the MCS core regions, ice in widespread cirrus shields is isotopically in approximate equilibrium with the ambient vapour, which is consistent with in situ formation of ice. These findings from the case study are supported by a statistical evaluation of isotope signals in the West African monsoon ice clouds. The following five key processes related to tropical ice clouds can be distinguished based on their characteristic isotope signatures: (1) convective lofting of enriched ice into the upper troposphere, (2) cirrus clouds that form in situ from ambient vapour under equilibrium fractionation, (3) sedimentation and sublimation of ice in the mixed-phase cloud layer in the vicinity of convective systems and underneath cirrus shields, (4) sublimation of ice in convective downdrafts that enriches the environmental vapour, and (5) the freezing of liquid water in the mixed-phase cloud layer at the base of convective updrafts. Importantly, the results show that convective systems strongly modulate the humidity budget and the isotopic composition of the lower tropical tropopause layer. They contribute to about 40 % of the total water and 60 % of HDO in the 175–125 hPa layer in the African monsoon region according to estimates based on our model simulations. Overall, this study demonstrates that isotopes can serve as useful tracers to disentangle the role of different processes in the Earth’s water cycle, including convective transport, the formation of ice clouds, and their impact on the tropical tropopause layer.


2010 ◽  
Vol 10 (5) ◽  
pp. 12907-12952 ◽  
Author(s):  
W. Gong ◽  
Q. Min ◽  
R. Li ◽  
A. Teller ◽  
E. Joseph ◽  
...  

Abstract. Observational studies suggest that the Saharan Air Layer (SAL), an elevated layer (850–500 hPa) of Saharan air and mineral dust, has strong impacts on the microphysical as well as dynamical properties of tropical deep convective cloud systems along its track. In this case study, numerical simulations using a two-dimensional Detailed Cloud Resolving Model (DCRM) were carried out to investigate the dust-cloud interactions in the tropical deep convection, focusing on the dust role as Ice Nuclei (IN). The simulations showed that mineral dust considerably enhanced heterogeneous nucleation and freezing at temperatures warmer than −40 °C, resulting in more ice hydrometeors number concentration and reduced precipitating size of ice particles. Because of the lower in the saturation over ice as well as more droplet freezing, total latent heating increased, and consequently the updraft velocity was stronger. On the other hand, the increased ice deposition consumed more water vapor at middle troposphere, which induces a competition for water vapor between heterogeneous and homogeneous freezing and nucleation. As a result, dust suppressed the homogeneous droplet freezing and nucleation due to the heterogeneous droplet freezing and the weakened transport of water vapor at lower stratosphere, respectively. These effects led to decreased number concentration of ice cloud particles in the upper troposphere, and consequently lowered the cloud top height during the stratus precipitating stage. Acting as IN, mineral dust also influenced precipitation in deep convection. It initiated earlier the collection because dust-related heterogeneous nucleation and freezing at middle troposphere occur earlier than homogeneous nucleation at higher altitudes. Nevertheless, the convective precipitation was suppressed by reduced collection of large graupel particles and insufficient fallout related to decreased sizes of precipitating ice hydrometeors. On the contrary, dust increased the precipitation in stratiform precipitation through deposition growth. Overall, the comprehensive effects of mineral dust suppressed the precipitation by up to 22%.


2017 ◽  
Author(s):  
Bin Zhao ◽  
Kuo-Nan Liou ◽  
Yu Gu ◽  
Jonathan H. Jiang ◽  
Qinbin Li ◽  
...  

Abstract. The interactions between aerosols and ice clouds represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. In particular, the impact of aerosols on ice crystal effective radius (Rei), which is a key parameter determining ice clouds' net radiative effect, is highly uncertain due to limited and conflicting observational evidence. Here we investigate the effects of aerosols on Rei under different meteorological conditions using 9-year satellite observations. We find that the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters. While there is a significant negative correlation between Rei and aerosol loading in moist conditions, consistent with the Twomey effect for liquid clouds, a strong positive correlation between the two occurs in dry conditions. Simulations based on a cloud parcel model suggest that water vapor modulates the relative importance of different ice nucleation modes, leading to the opposite aerosol impacts between moist and dry conditions. When ice clouds are decomposed into those generated from deep convection and formed in-situ, the water vapor modulation remains in effect for both ice cloud types, although the sensitivities of Rei to aerosols differ noticeably between them due to distinct formation mechanisms. The water vapor modulation can largely explain the difference in the responses of Rei to aerosol loadings in various seasons. A proper representation of the water vapor modulation is essential for an accurate estimate of aerosol-cloud radiative forcing produced by ice clouds.


2006 ◽  
Vol 6 (5) ◽  
pp. 10649-10672 ◽  
Author(s):  
V. Noel ◽  
D. M. Winker ◽  
T. J. Garrett ◽  
M. McGill

Abstract. This paper presents a comparison of lidar ratios and volume extinction coefficients in tropical ice clouds, retrieved using observations from two instruments: the 532-nm Cloud Physics Lidar (CPL), and the in-situ Cloud Integrating Nephelometer (CIN) probe. Both instruments were mounted on airborne platforms during the CRYSTAL-FACE campaign and took measurements up to 17 km. Coincident observations from two cases of ice clouds located on top of deep convective systems are compared. First, lidar ratios are retrieved from CPL observations of attenuated backscatter, using a retrieval algorithm for opaque cloud similar to one used in the soon-to-be launched CALIPSO mission, and compared to results from the regular CPL algorithm. These lidar ratios are used to retrieve extinction coefficient profiles, which are compared to actual observations from the CIN in-situ probe, putting the emphasis on their vertical variability. When observations coincide, retrievals from both instruments are very similar. Differences are generally variations around the average profiles, and general trends on larger spatial scales are usually well reproduced. The two instruments agree well, with an average difference of less than 11% on optical depth retrievals. Results suggest the CALIPSO Deep Convection algorithm can be trusted to deliver realistic estimates of the lidar ratio, leading to good retrievals of extinction coefficients.


2015 ◽  
Vol 72 (9) ◽  
pp. 3378-3388 ◽  
Author(s):  
Usama Anber ◽  
Shuguang Wang ◽  
Adam Sobel

Abstract The effects of turbulent surface fluxes and radiative heating on tropical deep convection are compared in a series of idealized cloud-system-resolving simulations with parameterized large-scale dynamics. Two methods of parameterizing the large-scale dynamics are used: the weak temperature gradient (WTG) approximation and the damped gravity wave (DGW) method. Both surface fluxes and radiative heating are specified, with radiative heating taken as constant in the vertical in the troposphere. All simulations are run to statistical equilibrium. In the precipitating equilibria, which result from sufficiently moist initial conditions, an increment in surface fluxes produces more precipitation than an equal increment of column-integrated radiative heating. This is straightforwardly understood in terms of the column-integrated moist static energy budget with constant normalized gross moist stability. Under both large-scale parameterizations, the gross moist stability does in fact remain close to constant over a wide range of forcings, and the small variations that occur are similar for equal increments of surface flux and radiative heating. With completely dry initial conditions, the WTG simulations exhibit hysteresis, maintaining a dry state with no precipitation for a wide range of net energy inputs to the atmospheric column. The same boundary conditions and forcings admit a rainy state also (for moist initial conditions), and thus multiple equilibria exist under WTG. When the net forcing (surface fluxes minus radiative heating) is increased enough that simulations that begin dry eventually develop precipitation, the dry state persists longer after initialization when the surface fluxes are increased than when radiative heating is increased. The DGW method, however, shows no multiple equilibria in any of the simulations.


2010 ◽  
Vol 10 (16) ◽  
pp. 7753-7761 ◽  
Author(s):  
Q. Min ◽  
R. Li

Abstract. In addition to microphysical changes in clouds, changes in nucleation processes of ice cloud due to aerosols would result in substantial changes in cloud top temperature as mildly supercooled clouds are glaciated through heterogenous nucleation processes. Measurements from multiple sensors on multiple observing platforms over the Atlantic Ocean show that the cloud effective temperature increases with mineral dust loading with a slope of +3.06 °C per unit aerosol optical depth. The macrophysical changes in ice cloud top distributions as a consequence of mineral dust-cloud interaction exert a strong cooling effect (up to 16 Wm−2) of thermal infrared radiation on cloud systems. Induced changes of ice particle size by mineral dusts influence cloud emissivity and play a minor role in modulating the outgoing longwave radiation for optically thin ice clouds. Such a strong cooling forcing of thermal infrared radiation would have significant impacts on cloud systems and subsequently on climate.


2008 ◽  
Vol 21 (4) ◽  
pp. 833-840 ◽  
Author(s):  
K. D. Williams ◽  
M. E. Brooks

Abstract The Met Office unified forecast–climate model is used to compare the properties of simulated climatological cloud regimes with those produced in short-range forecasts initialized from operational analyses. The regimes are defined as principal clusters of joint cloud-top pressure–optical depth histograms. In general, the cloud regime properties are found to be similar at all forecast times, including the climatological mean. This suggests that weaknesses in the representation of fast local processes are responsible for errors in the simulation of the cloud regimes. The increased horizontal resolution of the model used for numerical weather prediction generally has little impact on the cloud regimes, although the simulation of tropical shallow cumulus is improved, while the relative frequency of tropical deep convection and cirrus compare less favorably with observations. Analysis of the initial temperature tendency profiles for each cloud regime indicates that some of the initial temperature tendency, which leads to a systematic bias in the model climatology, is associated with a particular cloud regime.


2020 ◽  
Vol 13 (3) ◽  
pp. 1033-1049 ◽  
Author(s):  
Bin Yao ◽  
Chao Liu ◽  
Yan Yin ◽  
Zhiquan Liu ◽  
Chunxiang Shi ◽  
...  

Abstract. Extensive observational and numerical investigations have been performed to better characterize cloud properties. However, due to the large variations in cloud spatiotemporal distributions and physical properties, quantitative depictions of clouds in different atmospheric reanalysis datasets are still highly uncertain. A radiance-based evaluation approach is introduced and performed to evaluate the quality of cloud properties from reanalysis datasets. The China Meteorological Administration reanalysis (CRA); the ECMWF fifth-generation reanalysis (ERA5); and the Modern-Era Retrospective analysis for Applications, Version 2 (MERRA-2), i.e., those reanalyses providing sufficient cloud information, are considered. To avoid the influence of assumptions and uncertainties on satellite retrieval algorithms, forward radiative transfer simulations are used as a bridge to translate the reanalyses to corresponding radiances that are expected to be observed by satellites. The simulated reflectances and brightness temperatures (BTs) are directly compared with observations from the Advanced Himawari Imager onboard the Himawari-8 satellite in the East Asia region. We find that the simulated reflectances and BTs based on CRA and ERA5 are close to each other. CRA represents the total and midlayer cloud cover better than the other two datasets, and ERA5 depicts deep-convection structures more closely than CRA does. Comparisons of the simulated and observed BT differences suggest that water clouds are generally overestimated in ERA5 and MERRA-2, and MERRA-2 also overestimates the ice clouds over cyclone centers. Overall, clouds from CRA, ERA5, and MERRA-2 show their own advantages in different aspects. The ERA5 reanalysis has the best capability to represent the cloudy atmospheres over East Asia, and the CRA representations are close to those in ERA5.


Sign in / Sign up

Export Citation Format

Share Document