scholarly journals Extinction coefficients retrieved in deep tropical ice clouds from lidar observations using a CALIPSO-like algorithm compared to in-situ measurements from the Cloud Integrated Nephelometer during CRYSTAL-FACE

2006 ◽  
Vol 6 (5) ◽  
pp. 10649-10672 ◽  
Author(s):  
V. Noel ◽  
D. M. Winker ◽  
T. J. Garrett ◽  
M. McGill

Abstract. This paper presents a comparison of lidar ratios and volume extinction coefficients in tropical ice clouds, retrieved using observations from two instruments: the 532-nm Cloud Physics Lidar (CPL), and the in-situ Cloud Integrating Nephelometer (CIN) probe. Both instruments were mounted on airborne platforms during the CRYSTAL-FACE campaign and took measurements up to 17 km. Coincident observations from two cases of ice clouds located on top of deep convective systems are compared. First, lidar ratios are retrieved from CPL observations of attenuated backscatter, using a retrieval algorithm for opaque cloud similar to one used in the soon-to-be launched CALIPSO mission, and compared to results from the regular CPL algorithm. These lidar ratios are used to retrieve extinction coefficient profiles, which are compared to actual observations from the CIN in-situ probe, putting the emphasis on their vertical variability. When observations coincide, retrievals from both instruments are very similar. Differences are generally variations around the average profiles, and general trends on larger spatial scales are usually well reproduced. The two instruments agree well, with an average difference of less than 11% on optical depth retrievals. Results suggest the CALIPSO Deep Convection algorithm can be trusted to deliver realistic estimates of the lidar ratio, leading to good retrievals of extinction coefficients.

2007 ◽  
Vol 7 (5) ◽  
pp. 1415-1422 ◽  
Author(s):  
V. Noel ◽  
D. M. Winker ◽  
T. J. Garrett ◽  
M. McGill

Abstract. This paper presents a comparison of lidar ratios and volume extinction coefficients in tropical ice clouds, retrieved using observations from two instruments: the 532-nm Cloud Physics Lidar (CPL), and the in-situ Cloud Integrating Nephelometer (CIN) probe. Both instruments were mounted on airborne platforms during the CRYSTAL-FACE campaign and took measurements up to 17 km. Coincident observations from two cases of ice clouds located on top of deep convective systems are compared. First, lidar ratios are retrieved from CPL observations of attenuated backscatter, using a retrieval algorithm for opaque cloud similar to one used in the recently launched CALIPSO mission, and compared to results from the regular CPL algorithm. These lidar ratios are used to retrieve extinction coefficient profiles, which are compared to actual observations from the CIN in-situ probe, putting the emphasis on their vertical variability. When observations coincide, retrievals from both instruments are very similar, in the limits of colocation. Differences are generally variations around the average profiles, and general trends on larger spatial scales are well reproduced. The two instruments agree well, with an average difference of less than 11% on optical depth retrievals. Results suggest the CALIPSO Deep Convection algorithm can be trusted to deliver realistic estimates of the lidar ratio, leading to good retrievals of extinction coefficients.


2013 ◽  
Vol 70 (2) ◽  
pp. 465-486 ◽  
Author(s):  
Jian Yuan ◽  
Robert A. Houze

Abstract In the Indo-Pacific region, mesoscale convective systems (MCSs) occur in a pattern consistent with the eastward propagation of the large-scale convective envelope of the Madden–Julian oscillation (MJO). MCSs are major contributors to the total precipitation. Over the open ocean they tend to be merged or connected systems, while over the Maritime Continent area they tend to be separated or discrete. Over all regions affected by the MJO, connected systems increase in frequency during the active phase of the MJO. Characteristics of each type of MCS (separated or connected) do not vary much over MJO-affected regions. However, separated and connected MCSs differ in structure from each other. Connected MCSs have a larger size and produce less but colder-topped anvil cloud. For both connected and separated MCSs, larger systems tend to have colder cloud tops and less warmer-topped anvil cloud. The maximum height of MCS precipitating cores varies only slightly, and the variation is related to sea surface temperature. Enhanced large-scale convection, greater frequency of occurrence of connected MCSs, and increased midtroposphere moisture coincide, regardless of the region, season, or large-scale conditions (such as the concurrent phase of the MJO), suggesting that the coexistence of these phenomena is likely the nature of deep convection in this region. The increase of midtroposphere moisture observed in all convective regimes during large-scale convectively active phases suggests that the source of midtroposphere moisture is not local or instantaneous and that the accumulation of midtroposphere moisture over MJO-affected regions needs to be better understood.


2018 ◽  
Vol 11 (10) ◽  
pp. 5701-5727 ◽  
Author(s):  
Stuart A. Young ◽  
Mark A. Vaughan ◽  
Anne Garnier ◽  
Jason L. Tackett ◽  
James D. Lambeth ◽  
...  

Abstract. The Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the Cloud–Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) satellite has been making near-global height-resolved measurements of cloud and aerosol layers since mid-June 2006. Version 4.10 (V4) of the CALIOP data products, released in November 2016, introduces extensive upgrades to the algorithms used to retrieve the spatial and optical properties of these layers, and thus there are both obvious and subtle differences between V4 and previous data releases. This paper describes the improvements made to the extinction retrieval algorithms and illustrates the impacts of these changes on the extinction and optical depth estimates reported in the CALIPSO lidar level 2 data products. The lidar ratios for both aerosols and ice clouds are generally higher than in previous data releases, resulting in generally higher extinction coefficients and optical depths in V4. A newly implemented algorithm for retrieving extinction coefficients in opaque layers is described and its impact examined. Precise lidar ratio estimates are also retrieved in these opaque layers. For semi-transparent cirrus clouds, comparisons between CALIOP V4 optical depths and the optical depths reported by MODIS collection 6 show substantial improvements relative to earlier comparisons between CALIOP version 3 and MODIS collection 5.


2013 ◽  
Vol 6 (3) ◽  
pp. 719-739 ◽  
Author(s):  
S. Baidar ◽  
H. Oetjen ◽  
S. Coburn ◽  
B. Dix ◽  
I. Ortega ◽  
...  

Abstract. The University of Colorado Airborne Multi-Axis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument uses solar stray light to detect and quantify multiple trace gases, including nitrogen dioxide (NO2), glyoxal (CHOCHO), formaldehyde (HCHO), water vapor (H2O), nitrous acid (HONO), iodine monoxide (IO), bromine monoxide (BrO), and oxygen dimers (O4) at multiple wavelengths (absorption bands at 360, 477, 577, 632 nm) simultaneously in the open atmosphere. The instrument is unique as it (1) features a motion compensation system that decouples the telescope field of view from aircraft movements in real time (<0.35° accuracy), and (2) includes measurements of solar stray light photons from nadir, zenith, and multiple elevation angles forward and below the plane by the same spectrometer/detector system. Sets of solar stray light spectra collected from nadir to zenith scans provide some vertical profile information within 2 km above and below the aircraft altitude, and the vertical column density (VCD) below the aircraft is measured in nadir view. Maximum information about vertical profiles is derived simultaneously for trace gas concentrations and aerosol extinction coefficients over similar spatial scales and with a vertical resolution of typically 250 m during aircraft ascent/descent. The instrument is described, and data from flights over California during the CalNex (California Research at the Nexus of Air Quality and Climate Change) and CARES (Carbonaceous Aerosols and Radiative Effects Study) air quality field campaigns is presented. Horizontal distributions of NO2 VCD (below the aircraft) maps are sampled with typically 1 km resolution, and show good agreement with two ground-based MAX-DOAS instruments (slope = 0.95 ± 0.09, R2 = 0.86). As a case study vertical profiles of NO2, CHOCHO, HCHO, and H2O concentrations and aerosol extinction coefficients, ε, at 477 nm calculated from O4 measurements from a low approach at Brackett airfield inside the South Coast Air Basin (SCAB) are presented. These profiles contain ~12 degrees of freedom (DOF) over a 3.5 km altitude range, an independent information approximately every 250 m. The boundary layer NO2 concentration, and the integral aerosol extinction over height (aerosol optical depth, AOD) agrees well with nearby ground-based in situ NO2 measurement, and AERONET station. The detection limits of NO2, CHOCHO, HCHO, H2O442, &amp;varepsilon;360, &amp;varepsilon;477 for 30 s integration time spectra recorded forward of the plane are 5 ppt, 3 ppt, 100 ppt, 42 ppm, 0.004 km−1, 0.002 km−1 in the free troposphere (FT), and 30 ppt, 16 ppt, 540 ppt, 252 ppm, 0.012 km−1, 0.006 km−1 inside the boundary layer (BL), respectively. Mobile column observations of trace gases and aerosols are complimentary to in situ observations, and help bridge the spatial scales that are probed by satellites and ground-based observations, and predicted by atmospheric models.


2013 ◽  
Vol 26 (4) ◽  
pp. 1457-1466 ◽  
Author(s):  
William B. Rossow ◽  
Ademe Mekonnen ◽  
Cindy Pearl ◽  
Weber Goncalves

Abstract Classifying tropical deep convective systems by the mesoscale distribution of their cloud properties and sorting matching precipitation measurements over an 11-yr period reveals that the whole distribution of instantaneous precipitation intensity and daily average accumulation rate is composed of (at least) two separate distributions representing distinctly different types of deep convection associated with different meteorological conditions (the distributions of non-deep-convective situations are also shown for completeness). The two types of deep convection produce very different precipitation intensities and occur with very different frequencies of occurrence. Several previous studies have shown that the interaction of the large-scale tropical circulation with deep convection causes switching between these two types, leading to a substantial increase of precipitation. In particular, the extreme portion of the tropical precipitation intensity distribution, above 2 mm h−1, is produced by 40% of the larger, longer-lived mesoscale-organized type of convection with only about 10% of the ordinary convection occurrences producing such intensities. When average precipitation accumulation rates are considered, essentially all of the values above 2 mm h−1 are produced by the mesoscale systems. Yet today’s atmospheric models do not represent mesoscale-organized deep convective systems that are generally larger than current-day circulation model grid cell sizes but smaller than the resolved dynamical scales and last longer than the typical physics time steps. Thus, model-based arguments for how the extreme part of the tropical precipitation distribution might change in a warming climate are suspect.


2021 ◽  
Author(s):  
Andries Jan de Vries ◽  
Franziska Aemisegger ◽  
Stephan Pfahl ◽  
Heini Wernli

Abstract. Tropical ice clouds have an important influence on the Earth’s radiative balance. They often form as a result of tropical deep convection, which strongly affects the water budget of the tropical tropopause layer. Ice cloud formation involves complex interactions on various scales, which are not fully understood yet and lead to large uncertainties in climate predictions. In this study, we investigate the formation of tropical ice clouds related to deep convection in the West African monsoon, using stable water isotopes as tracers of moist atmospheric processes. We perform simulations using the regional isotope-enabled model COSMOiso with different resolutions and treatments of convection for the period of June–July 2016. First, we evaluate the ability of our simulations to represent the isotopic composition of monthly precipitation through comparison with GNIP observations, and the precipitation characteristics related to the monsoon evolution and convective storms based on insights from the DACCIWA field campaign in 2016. Next, a case study of a mesoscale convective system (MCS) explores the isotope signatures of tropical deep convection in atmospheric water vapour and ice. Convective updrafts within the MCS inject enriched ice into the upper troposphere leading to depletion of vapour within these updrafts due to the preferential condensation and deposition of heavy isotopes. Water vapour in downdrafts within the same MCS are enriched by non-fractionating sublimation of ice. In contrast to ice within the MCS core regions, ice in widespread cirrus shields is isotopically in approximate equilibrium with the ambient vapour, which is consistent with in situ formation of ice. These findings from the case study are supported by a statistical evaluation of isotope signals in the West African monsoon ice clouds. The following five key processes related to tropical ice clouds can be distinguished based on their characteristic isotope signatures: (1) convective lofting of enriched ice into the upper troposphere, (2) cirrus clouds that form in situ from ambient vapour under equilibrium fractionation, (3) sedimentation and sublimation of ice in the mixed-phase cloud layer in the vicinity of convective systems and underneath cirrus shields, (4) sublimation of ice in convective downdrafts that enriches the environmental vapour, and (5) the freezing of liquid water in the mixed-phase cloud layer at the base of convective updrafts. Importantly, the results show that convective systems strongly modulate the humidity budget and the isotopic composition of the lower tropical tropopause layer. They contribute to about 40 % of the total water and 60 % of HDO in the 175–125 hPa layer in the African monsoon region according to estimates based on our model simulations. Overall, this study demonstrates that isotopes can serve as useful tracers to disentangle the role of different processes in the Earth’s water cycle, including convective transport, the formation of ice clouds, and their impact on the tropical tropopause layer.


2014 ◽  
Vol 14 (16) ◽  
pp. 8701-8721 ◽  
Author(s):  
M. S. Johnston ◽  
S. Eliasson ◽  
P. Eriksson ◽  
R. M. Forbes ◽  
A. Gettelman ◽  
...  

Abstract. The representation of the effect of tropical deep convective (DC) systems on upper-tropospheric moist processes and outgoing longwave radiation is evaluated in the EC-Earth3, ECHAM6, and CAM5 (Community Atmosphere Model) climate models using satellite-retrieved data. A composite technique is applied to thousands of deep convective systems that are identified using local rain rate maxima in order to focus on the temporal evolution of the deep convective processes in the model and satellite-retrieved data. The models tend to over-predict the occurrence of rain rates that are less than ≈ 3 mm h−1 compared to Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA). While the diurnal distribution of oceanic rain rate maxima in the models is similar to the satellite-retrieved data, the land-based maxima are out of phase. Despite having a larger climatological mean upper-tropospheric relative humidity, models closely capture the satellite-derived moistening of the upper troposphere following the peak rain rate in the deep convective systems. Simulated cloud fractions near the tropopause are larger than in the satellite data, but the ice water contents are smaller compared with the satellite-retrieved ice data. The models capture the evolution of ocean-based deep convective systems fairly well, but the land-based systems show significant discrepancies. Over land, the diurnal cycle of rain is too intense, with deep convective systems occurring at the same position on subsequent days, while the satellite-retrieved data vary more in timing and geographical location. Finally, simulated outgoing longwave radiation anomalies associated with deep convection are in reasonable agreement with the satellite data, as well as with each other. Given the fact that there are strong disagreements with, for example, cloud ice water content, and cloud fraction, between the models, this study supports the hypothesis that such agreement with satellite-retrieved data is achieved in the three models due to different representations of deep convection processes and compensating errors.


2014 ◽  
Vol 15 (6) ◽  
pp. 2484-2500 ◽  
Author(s):  
Ronald Stenz ◽  
Xiquan Dong ◽  
Baike Xi ◽  
Robert J. Kuligowski

Abstract Although satellite precipitation estimates provide valuable information for weather and flood forecasts, infrared (IR) brightness temperature (BT)-based algorithms often produce large errors for precipitation detection and estimation during deep convective systems (DCSs). As DCSs produce greatly varying precipitation rates below similar IR BT retrievals, using IR BTs alone to estimate precipitation in DCSs is problematic. Classifying a DCS into convective-core (CC), stratiform (SR), and anvil cloud (AC) regions allows an evaluation of estimated precipitation distributions among DCS components to supplement typical quantitative precipitation estimate (QPE) evaluations and to diagnose these IR-based algorithm biases. This paper assesses the performance of the National Mosaic and Multi-Sensor Next Generation Quantitative Precipitation Estimation System (NMQ Q2), and a simplified version of the Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR) algorithm, over the state of Oklahoma using Oklahoma Mesonet observations. While average annual Q2 precipitation estimates were about 35% higher than Mesonet observations, strong correlations exist between these two datasets for multiple temporal and spatial scales. Additionally, the Q2-estimated precipitation distribution among DCS components strongly resembled the Mesonet-observed distribution, indicating Q2 can accurately capture the precipitation characteristics of DCSs despite its wet bias. SCaMPR retrievals were typically 3–4 times higher than Mesonet observations, with relatively weak correlations during 2012. Overestimates from SCaMPR retrievals were primarily caused by precipitation retrievals from the anvil regions of DCSs when collocated Mesonet stations recorded no precipitation. A modified SCaMPR retrieval algorithm, employing both cloud optical depth and IR temperature, has the potential to make significant improvements to reduce the wet bias of SCaMPR retrievals over anvil regions of a DCS.


2012 ◽  
Vol 5 (5) ◽  
pp. 7243-7292 ◽  
Author(s):  
S. Baidar ◽  
H. Oetjen ◽  
S. Coburn ◽  
B. Dix ◽  
I. Ortega ◽  
...  

Abstract. The University of Colorado Airborne Multi Axis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument uses solar stray light remote sensing to detect and quantify multiple trace gases, including nitrogen dioxide (NO2), glyoxal (CHOCHO), formaldehyde (HCHO), water vapor (H2O), nitrous acid (HONO), iodine monoxide (IO), bromine monoxide (BrO), and oxygen dimers (O4) at multiple wavelengths (360 nm, 477 nm, 577 nm and 632 nm) simultaneously, and sensitively in the open atmosphere. The instrument is unique, in that it presents the first systematic implementation of MAX-DOAS on research aircraft, i.e. (1) includes measurements of solar stray light photons from nadir, zenith, and multiple elevation angles forward and below the plane by the same spectrometer/detector system, and (2) features a motion compensation system that decouples the telescope field of view (FOV) from aircraft movements in real-time (< 0.35° accuracy). Sets of solar stray light spectra collected from nadir to zenith scans provide some vertical profile information within 2 km above and below the aircraft altitude, and the vertical column density (VCD) below the aircraft is measured in nadir view. Maximum information about vertical profiles is derived simultaneously for trace gas concentrations and aerosol extinction coefficients over similar spatial scales and with a vertical resolution of typically 250 m during aircraft ascent/descent. The instrument is described, and data from flights over California during the CalNex and CARES air quality field campaigns is presented. Horizontal distributions of NO2 VCDs (below the aircraft) maps are sampled with typically 1 km resolution, and show good agreement with two ground based CU MAX-DOAS instruments (slope 0.95 ± 0.09, R2 = 0.86). As a case study vertical profiles of NO2, CHOCHO, HCHO, and H2O mixing ratios and aerosol extinction coefficients, ε, at 477nm calculated from O4 measurements from a low approach at Brackett airfield inside the South Coast Air Basin (SCAB) are presented. These profiles contain ~ 12 degrees of freedom (DOF) over a 3.5 km altitude range, independent of signal-to-noise at which the trace gas is detected. The boundary layer NO2 concentration, and the integral aerosol extinction over height (aerosol optical depth, AOD) agrees well with nearby ground-based in-situ NO2 measurement, and AERONET station. The detection limits of NO2, CHOCHO, HCHO, ε360, ε477 from 30 s integration time spectra recorded forward of the plane are 5 ppt, 3 ppt, 100 ppt, 0.004 km−1, 0.002 km−1 in the free troposphere (FT), and 30 ppt, 16 ppt, 540 ppt, 0.012 km−1, 0.006 km−1 inside the boundary layer (BL), respectively. Mobile column observations of trace gases and aerosols are complimentary to in-situ observations, and help bridge the spatial scales probed by ground-based observations, satellites, and predicted by atmospheric models.


Sign in / Sign up

Export Citation Format

Share Document