Cardioprotective Effects of Phenylethanoid Glycoside-rich Extract from Cistanche deserticola in Ischemia-Reperfusion–Induced Myocardial Infarction in Rats

2016 ◽  
Vol 34 ◽  
pp. 234-242 ◽  
Author(s):  
Qian Yu ◽  
Xin Li ◽  
Xia Cao
2018 ◽  
Vol 27 (8) ◽  
pp. 1256-1268 ◽  
Author(s):  
Tianyu Li ◽  
Yunshu Su ◽  
Xiongli Yu ◽  
Durgahee S.A. Mouniir ◽  
Jackson Ferdinand Masau ◽  
...  

Stem cell transplantation represents a promising therapeutic approach for myocardial ischemia/reperfusion (I/R) injury, where cortical bone-derived stem cells (CBSCs) stand out and hold superior cardioprotective effects on myocardial infarction than other types of stem cells. However, the molecular mechanism underlying CBSCs function on myocardial I/R injury is poorly understood. In a previous study, we reported that Trop2 (trophoblast cell-surface antigen 2) is expressed exclusively on the CBSCs membrane, and is involved in regulation of proliferation and differentiation of CBSCs. In this study, we found that the Trop2 is essential for the ameliorative effects of CBSCs on myocardial I/R-induced heart damage via promoting angiogenesis and inhibiting cardiomyocytes apoptosis in a paracrine manner. Trop2 is required for the colonization of CBSCs in recipient hearts. When Trop2 was knocked out, CBSCs largely lost their functions in lowering myocardial infarction size, improving heart function, enhancing capillary density, and suppressing myocardial cell death. Mechanistically, activating the AKT/GSK3β/β-Catenin signaling axis contributes to the essential role of Trop2 in CBSCs-rendered cardioprotective effects on myocardial I/R injury. In conclusion, maintaining the expression and/or activation of Trop2 in CBSCs might be a promising strategy for treating myocardial infarction, I/R injury, and other related heart diseases.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Scott M. Filippone ◽  
Arun Samidurai ◽  
Sean K. Roh ◽  
Chad K. Cain ◽  
Jun He ◽  
...  

Prompt coronary reperfusion is the gold standard for minimizing injury following acute myocardial infarction. Rapamycin, mammalian target of Rapamycin (mTOR) inhibitor, exerts preconditioning-like cardioprotective effects against ischemia/reperfusion (I/R) injury. We hypothesized that Rapamycin, given at the onset of reperfusion, reduces myocardial infarct size through modulation of mTOR complexes. Adult C57 male mice were subjected to 30 min of myocardial ischemia followed by reperfusion for 1 hour/24 hours. Rapamycin (0.25 mg/kg) or DMSO (7.5%) was injected intracardially at the onset of reperfusion. Post-I/R survival (87%) and cardiac function (fractional shortening, FS:28.63±3.01%) were improved in Rapamycin-treated mice compared to DMSO (survival: 63%, FS:17.4±2.6%). Rapamycin caused significant reduction in myocardial infarct size (IS:26.2±2.2%) and apoptosis (2.87±0.64%) as compared to DMSO-treated mice (IS:47.0±2.3%; apoptosis:7.39±0.81%). Rapamycin induced phosphorylation of AKT S473 (target of mTORC2) but abolished ribosomal protein S6 phosphorylation (target of mTORC1) after I/R. Rapamycin induced phosphorylation of ERK1/2 but inhibited p38 phosphorylation. Infarct-limiting effect of Rapamycin was abolished with ERK inhibitor, PD98059. Rapamycin also attenuated Bax and increased Bcl-2/Bax ratio. These results suggest that reperfusion therapy with Rapamycin protects the heart against I/R injury by selective activation of mTORC2 and ERK with concurrent inhibition of mTORC1 and p38.


2018 ◽  
Vol 132 (1) ◽  
pp. 93-110 ◽  
Author(s):  
Lei-Lei Ma ◽  
Yang Li ◽  
Pei-Pei Yin ◽  
Fei-Juan Kong ◽  
Jun-Jie Guo ◽  
...  

Left ventricular hypertrophy (LVH) is causally related to increased morbidity and mortality following acute myocardial infarction (AMI) via still unknown mechanisms. Although rapamycin exerts cardioprotective effects against myocardial ischemia/reperfusion (MI/R) injury in normal animals, whether rapamycin-elicited cardioprotection is altered in the presence of LVH has yet to be determined. Pressure overload induced cardiac hypertrophied mice and sham-operated controls were exposed to AMI by coronary artery ligation, and treated with vehicle or rapamycin 10 min before reperfusion. Rapamycin produced marked cardioprotection in normal control mice, whereas pressure overload induced cardiac hypertrophied mice manifested enhanced myocardial injury, and was refractory to rapamycin-elicited cardioprotection evidenced by augmented infarct size, aggravated cardiomyocyte apoptosis, and worsening cardiac function. Rapamycin alleviated MI/R injury via ERK-dependent antioxidative pathways in normal mice, whereas cardiac hypertrophied mice manifested markedly exacerbated oxidative/nitrative stress after MI/R evidenced by the increased iNOS/gp91phox expression, superoxide production, total NO metabolites, and nitrotyrosine content. Moreover, scavenging superoxide or peroxynitrite by selective gp91phox assembly inhibitor gp91ds-tat or ONOO− scavenger EUK134 markedly ameliorated MI/R injury, as shown by reduced myocardial oxidative/nitrative stress, alleviated myocardial infarction, hindered cardiomyocyte apoptosis, and improved cardiac function in aortic-banded mice. However, no additional cardioprotective effects were achieved when we combined rapamycin and gp91ds-tat or EUK134 in ischemic/reperfused hearts with or without LVH. These results suggest that cardiac hypertrophy attenuated rapamycin-induced cardioprotection by increasing oxidative/nitrative stress and scavenging superoxide/peroxynitrite protects the hypertrophied heart from MI/R.


1999 ◽  
Vol 82 (S 01) ◽  
pp. 68-72 ◽  
Author(s):  
Alessandro Sciahbasi ◽  
Eugenia De Marco ◽  
Attilio Maseri ◽  
Felicita Andreotti

SummaryPreinfarction angina and early reperfusion of the infarct-related artery are major determinants of reduced infarct-size in patients with acute myocardial infarction. The beneficial effects of preinfarction angina on infarct size have been attributed to the development of collateral vessels and/or to post-ischemic myocardial protection. However, recently, a relation has been found between prodromal angina, faster coronary recanalization, and smaller infarcts in patients treated with rt-PA: those with preinfarction angina showed earlier reperfusion (p = 0.006) and a 50% reduction of CKMB-estimated infarct-size (p = 0.009) compared to patients without preinfarction angina. This intriguing observation is consistent with a subsequent observation of higher coronary recanalization rates following thrombolysis in patients with prodromal preinfarction angina compared to patients without antecedent angina. Recent findings in dogs show an enhanced spontaneous lysis of plateletrich coronary thrombi with ischemic preconditioning, which is prevented by adenosine blockade, suggesting an antithrom-botic effect of ischemic metabolites. Understanding the mechanisms responsible for earlier and enhanced coronary recanalization in patients with preinfarction angina may open the way to new reperfusion strategies.A vast number of studies, globally involving ≈17,000 patients with acute myocardial infarction, have unequivocally shown that an infarction preceded by angina evolves into a smaller area of necrosis compared to an infarct not preceded by angina (Table 1) (1). So far, preinfarction angina has been thought to have cardioprotective effects mainly through two mechanisms: collateral perfusion of the infarctzone (2-4), and ischemic preconditioning of the myocardium (5-7). Here we discuss a further mechanism of protection represented by improved reperfusion of the infarct-related artery.


2020 ◽  
Vol 17 (1) ◽  
pp. 11-17 ◽  
Author(s):  
Xiancan Wang ◽  
Yuqiang Shang ◽  
Shilin Dai ◽  
Wei Wu ◽  
Fan Yi ◽  
...  

Purpose: Myocardial infarction is a common cardiovascular disease. MicroRNA-16-5p (miR-16-5p) was upregulated in heart and kidney hypoxia/reoxygenation (H/R) injury. However, the role of miR-16-5p in myocardial infarction injury is still unclear. Methods: Human adult ventricular cardiomyocytes (AC16) were treated with ischemia/reperfusion (H/R). The miR-16-5p level was evaluated through real-time PCR. The activity of lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) was detected via LDH and CK-MB monitoring kits. Cell viability was examined with 3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetra-zolium bromide (MTT) assay. Western blotting was used to analyze the protein levels. The luci-ferase report assay confirmed the relative luciferase activity. Results: miR-16-5p was elevated in H/R-treated AC16 cells. miR-16-5p overexpression and knockdown were carried out. miR-16-5p knockdown repressed cell apoptosis, attenuated LDH and CK-MB activities, and enhanced cell viability in H/R-treated AC16 cells. Moreover, miR-16-5p knockdown promoted angiogenesis in human microvascular endothelial cells (HMVEC), causing elevation of vascular endothelial growth factor (VEGF), insulin receptor substrates 1 (IRS1), minichromosome maintenance complex component 2 (MCM2) and proliferating cell nuclear antigen (PCNA) protein levels. Moreover, miR-16-5p was testified to target IRS1. IRS1 silencing alleviated miR-16-5p knockdown-mediated inhibition of apoptosis in AC16 cells. Conclusion: miR-16-5p knockdown increased cell viability and angiogenesis, as well as inhibited cell apoptosis by increasing IRS1. These findings indicated that miR-16-5p knockdown may be a new therapeutic target for myocardial infarction.


Author(s):  
Sangeethadevi Govindasami ◽  
Veera Venkata Sathibabu Uddandrao ◽  
Nivedha Raveendran ◽  
Vadivukkarasi Sasikumar

Background: This study determined the effect of Biochanin A (BCA) on isoproterenol (ISO) induced Myocardial Infarction (MI) in male Wistar rats. Methods: Animals (weighing 150-180 g) were divided into four groups, with six animals in each group and pretreated with BCA (10mg/kg Body Weight [BW]) and ɑ-tocopherol (60mg/kg BW) for 30 days; and ISO (20mg/kg BW) was administrated subcutaneously on the 31st and 32nd day. Results: ISO-induced MI rats demonstrated the significant elevation of serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase, lactate dehydrogenase, creatine kinase-MB and cardiac troponin; however, concomitant pretreatment with BCA protected the rats from cardiotoxicity caused by ISO. Activities of antioxidant enzymes, such as superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and glutathione reductase significantly reduced in the heart with ISO-induced MI. Pretreatment with BCA produced a marked reversal of these antioxidant enzymes related to MI-induced by ISO. Conclusion: In conclusion, this study suggested that BCA exerts cardioprotective effects through modulating lipid peroxidation, enhancing antioxidants, and detoxifying enzyme systems.


2021 ◽  
Vol 19 ◽  
pp. 205873922110005
Author(s):  
Yongle Sun ◽  
Jing Geng ◽  
Deyu Wang

Aging is the crucial co-morbidity that prevents the full cardioprotection against myocardial ischemia/reperfusion (I/R) injury. Combination therapy as a promising strategy may overcome this clinical problem. This study aimed to investigate the cardioprotective effects of Ginsenoside compound-Mc1 (GMc1) and Dendrobium Nobile Lindl (DNL) in myocardial I/R injury and explore the involvement of the TLR4/NF-κB signaling pathway in aged rats. In vivo I/R injury and myocardial infarction was established by temporary coronary ligation in 22–24 months’ old Sprague Dawley male rats. GMc1 (10 mg/kg) and DNL (80 mg/kg) were administered intraperitoneally for 4 weeks and orally for 14 days, respectively, before I/R injury. Infarct size was measured through triphenyl-tetrazolium-chloride staining. ELISA assay was conducted to quantify the levels of cardiotroponin, and myocardial content of TNF-α and glutathione. Western blotting was employed to detect the expression of TLR4/MyD88/NF-κB proteins. GMc1 and DNL significantly reduced the infarct size to a similar extent ( p < 0.05) but their combined effect was greater than individual ones ( p < 0.01). Combination therapy significantly restored the left ventricular end-diastolic and developed pressures at the end of reperfusion as compared with the untreated group ( p < 0.01). Although the GMc1 and DNL reduced the levels of inflammatory cytokine TNF-α and increased the contents of antioxidant glutathione significantly, their individual effects on the reduction of protein expression of TLR4/MyD88/NF-κB pathway were not consistent. However, their combination could significantly reduce all parameters of this inflammatory pathway as compared to untreated I/R rats ( p < 0.001). Therefore, the combined treatment with GMc1 and DNL increased the potency of each intervention in protecting the aged hearts against I/R injury. Reduction in the activity of the TLR4/MyD88/NF-κB signaling pathway and subsequent modulation of the activity of inflammatory cytokines and endogenous antioxidants play an important role in this cardioprotection.


Sign in / Sign up

Export Citation Format

Share Document