scholarly journals Relative importance of driving force and electrostatic interactions in the reduction of multihaem cytochromes by small molecules

2013 ◽  
Vol 1827 (6) ◽  
pp. 745-750 ◽  
Author(s):  
Pedro O. Quintas ◽  
Andreia P. Cepeda ◽  
Nuno Borges ◽  
Teresa Catarino ◽  
David L. Turner
Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1551
Author(s):  
Qing Liu ◽  
Ahmed Shaukat ◽  
Daniella Kyllönen ◽  
Mauri A. Kostiainen

Protein cages are nanocompartments with a well-defined structure and monodisperse size. They are composed of several individual subunits and can be categorized as viral and non-viral protein cages. Native viral cages often exhibit a cationic interior, which binds the anionic nucleic acid genome through electrostatic interactions leading to efficient encapsulation. Non-viral cages can carry various cargo, ranging from small molecules to inorganic nanoparticles. Both cage types can be functionalized at targeted locations through genetic engineering or chemical modification to entrap materials through interactions that are inaccessible to wild-type cages. Moreover, the limited number of constitutional subunits ease the modification efforts, because a single modification on the subunit can lead to multiple functional sites on the cage surface. Increasing efforts have also been dedicated to the assembly of protein cage-mimicking structures or templated protein coatings. This review focuses on native and modified protein cages that have been used to encapsulate and package polyelectrolyte cargos and on the electrostatic interactions that are the driving force for the assembly of such structures. Selective encapsulation can protect the payload from the surroundings, shield the potential toxicity or even enhance the intended performance of the payload, which is appealing in drug or gene delivery and imaging.


2010 ◽  
Vol 1 (2) ◽  
pp. 1-22 ◽  
Author(s):  
Joyce M.W Low ◽  
Loon Ching Tang ◽  
Xue-Ming Yuan

This paper examines the effects of primary production and key economic factors on air cargo traffic between 1999 and 2005 in the East Asian airport industry through econometric and clustering analyses. This paper’s findings show that while the relative importance of physical capital to human capital has dramatically risen, adequate provisions and utilizations of physical facilities for landside operations appear to be a more significant driving force for an airport’s cargo traffic performances compared to those of airside operations. Even though cost savings are found to have regained their importance in the recent years, the degree of scale economies has fallen so sharply that airports can no longer rely on size for competitive edge. Nevertheless, there is still a close positive relationship between a nation’s economic development and the volume of cargo traffic at its airport.


2017 ◽  
Vol 73 (10) ◽  
pp. 803-809 ◽  
Author(s):  
Ai Wang ◽  
Ulli Englert

Specific short contacts are important in crystal engineering. Hydrogen bonds have been particularly successful and together with halogen bonds can be useful for assembling small molecules or ions into crystals. The ionic constituents in the isomorphous 3,5-dichloropyridinium (3,5-diClPy) tetrahalometallates 3,5-dichloropyridinium tetrachloridozincate(II), (C5H4Cl2N)2[ZnCl4] or (3,5-diClPy)2ZnCl4, 3,5-dichloropyridinium tetrabromidozincate(II), (C5H4Cl2N)2[ZnBr4] or (3,5-diClPy)2ZnBr4, and 3,5-dichloropyridinium tetrabromidocobaltate(II), (C5H4Cl2N)2[CoBr4] or (3,5-diClPy)2CoBr4, arrange according to favourable electrostatic interactions. Cations are preferably surrounded by anions and vice versa; rare cation–cation contacts are associated with an antiparallel dipole orientation. N—H...X (X = Cl and Br) hydrogen bonds and X...X halogen bonds compete as closest contacts between neighbouring residues. The former dominate in the title compounds; the four symmetrically independent pyridinium N—H groups in each compound act as donors in charge-assisted hydrogen bonds, with halogen ligands and the tetrahedral metallate anions as acceptors. The M—X coordinative bonds in the latter are significantly longer if the halide ligand is engaged in a classical X...H—N hydrogen bond. In all three solids, triangular halogen-bond interactions are observed. They might contribute to the stabilization of the structures, but even the shortest interhalogen contacts are only slightly shorter than the sum of the van der Waals radii.


1998 ◽  
pp. 975-976 ◽  
Author(s):  
Goverdhan Mehta ◽  
Chebolu Ravikrishna ◽  
Goverdhan Mehta ◽  
Chebolu Ravikrishna ◽  
Shridhar R. Gadre ◽  
...  

1991 ◽  
Vol 249 ◽  
Author(s):  
Jennifer A. Lewis ◽  
Michael J. Cima

ABSTRACTBoth the binder viscosity and the % saturation will change during the removal of multicomponent binder systems. The effects of these changes were evaluated for the polyvinyl butyral (PVB) - dibutyl phthlate (DBP) system as the plasticizing constituent was selectively removed at isothermal conditions (Tiso < 170°C). Experiments were performed to determine the viscosities of the PVB-DBP system at various isotherms and at different concentrations of DBP. A scaling model was developed to determine the relative importance of capillary forces on the distribution of binder within ceramic compacts during thermolysis. This model was modified to account for the influence of fluid saturation on both the capillary driving force and the permeability of the wetting phase (i.e., binder). Two important results are derived from this analysis: (1) the change in binder viscosity affects the length scale (h) over which capillary forces act to redistribute the PVB-DBP to a greater degree than the change in saturation, and (2) the value of h can be significantly lower than the representative macroscopic dimension of the green compact and still permit a capillary-controlled distribution process for multicomponent binders.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Thibaud Gruber ◽  
Klaus Zuberbühler ◽  
Christof Neumann

Ecological variation influences the appearance and maintenance of tool use in animals, either due to necessity or opportunity, but little is known about the relative importance of these two factors. Here, we combined long-term behavioural data on feeding and travelling with six years of field experiments in a wild chimpanzee community. In the experiments, subjects engaged with natural logs, which contained energetically valuable honey that was only accessible through tool use. Engagement with the experiment was highest after periods of low fruit availability involving more travel between food patches, while instances of actual tool-using were significantly influenced by prior travel effort only. Additionally, combining data from the main chimpanzee study communities across Africa supported this result, insofar as groups with larger travel efforts had larger tool repertoires. Travel thus appears to foster tool use in wild chimpanzees and may also have been a driving force in early hominin technological evolution.


2009 ◽  
Vol 74 (2) ◽  
pp. 363-391 ◽  
Author(s):  
José Alfredo González-Calderón ◽  
Fernando del Río

We present evidence for the regular behaviour of the Boyle temperature TB in gaseous binary mixtures of small molecules with negligible multipolar moments. We use this regularity to construct a new combining rule for the prediction of the cross interaction u12(r) in those mixtures. The combining rule gives TB of the cross interaction as the harmonic mean of the Boyle temperatures of the pure components. The validity of this harmonic rule is based on experimental data of 28 binary mixtures, whose TB have been obtained from experimental data of the cross virial coefficient B12(T). In determining TB we make use of non-conformal potentials that have been proven to represent very accurately the effective interactions of the molecules investigated. The new combining rule is used to give interaction parameters of several dozens of binary mixtures involving noble gases (Ne, Ar, Kr and Xe), diatomic molecules (N2, O2 and CO) and n-alkanes (from methane to n-octane). These interaction parameters lead to a prediction of cross virial coefficients B12(T) within experimental error. Electrostatic interactions, originating in permanent dipolar, quadrupolar, octupolar and hexadecapolar moments and exemplified by molecules of HCl, CO2, CF4 and SF6, depart from the regular non-polar behaviour.


2016 ◽  
Vol 90 (20) ◽  
pp. 9518-9532 ◽  
Author(s):  
Yi Wen ◽  
Robert A. Dick ◽  
Gerald W. Feigenson ◽  
Volker M. Vogt

ABSTRACTThe retroviral structural protein Gag binds to the inner leaflet of the plasma membrane (PM), and many cellular proteins do so as well. We used Rous sarcoma virus (RSV) Gag together with membrane sensors to study the principles governing peripheral protein membrane binding, including electrostatics, specific recognition of phospholipid headgroups, sensitivity to phospholipid acyl chain compositions, preference for membrane order, and protein multimerization. We used anin vitroliposome-pelleting assay to test protein membrane binding properties of Gag, the well-characterized MARCKS peptide, a series of fluorescent electrostatic sensor proteins (mNG-KRn), and the specific phosphatidylserine (PS) binding protein Evectin2. RSV Gag and mNG-KRn bound well to membranes with saturated and unsaturated acyl chains, whereas the MARCKS peptide and Evectin2 preferentially bound to membranes with unsaturated acyl chains. To further discriminate whether the primary driving force for Gag membrane binding is electrostatic interactions or preference for membrane order, we measured protein binding to giant unilamellar vesicles (GUVs) containing the same PS concentration in both disordered (Ld) and ordered (Lo) phases. RSV Gag and mNG-KRn membrane association followed membrane charge, independent of membrane order. Consistent with pelleting data, the MARCKS peptide showed preference for the Ld domain. Surprisingly, the PS sensor Evectin2 bound to the PS-rich Ld domain with 10-fold greater affinity than to the PS-rich Lo domain. In summary, we found that RSV Gag shows no preference for membrane order, while proteins with reported membrane-penetrating domains show preference for disordered membranes.IMPORTANCERetroviral particles assemble on the PM and bud from infected cells. Our understanding of how Gag interacts with the PM and how different membrane properties contribute to overall Gag assembly is incomplete. This study examined how membrane charge and membrane order influence Gag membrane association. Consistent with previous work on RSV Gag, we report here that electrostatic interactions provide the primary driving force for RSV Gag membrane association. Using phase-separated GUVs with known lipid composition of the Ld and Lo phases, we demonstrate for the first time that RSV Gag is sensitive to membrane charge but not membrane order. In contrast, the cellular protein domain MARCKS and the PS sensor Evectin2 show preference for disordered membranes. We also demonstrate how to define GUV phase composition, which could serve as a tool in future studies of protein membrane interactions.


2021 ◽  
Author(s):  
Clément Sester

<p><b>Aptamers are synthetic nucleic acid single-stranded oligonucleotides that bind to a wide range of ligands, including cells, proteins, DNA strands, metal ions, and small molecules, with high specificity and affinity. Aptamers have also proven to be highly stable, readily adaptable to chemical modifications, and exhibit reversible binding. As a result, aptamer-based biosensors (aptasensors) are promising replacements for antibody-based biosensors in many applications, particularly for small molecule ligands. This thesis explores an aptamer that binds the drug methamphetamine, and its prospects when incorporated in an electrochemical (e-chem) signal transduction platform. Specifically, we examine the range of interactions between the aptamer and ligand, and with electrodes, and identify a number of challenges in generating robust e-chem aptasensors.</b></p> <p>Due to their size and limited number of functional groups, further understanding of the aptamer-small molecule ligand interactions is required for the design of future aptasensors – particularly the thermodynamics and structural information about the aptamer-ligand interaction. In fact, detecting small molecules with aptasensors can become challenging because target addition may induce little structural change, and therefore numerous nonspecific interactions may emerge as transduced signals from the biosensor. In this thesis, the combination of spectroscopic and calorimetric analytical techniques reveals a conformational selection binding model, in which binding is entropically driven, and the meth binds via hydrophobic and electrostatic interactions and only induces a modest structural change. This first-of-its-kind study is important for the selection and the design of the aptasensor transduction system.</p> <p>Electrochemical (e-chem) aptasensors offer high inherent sensitivity and practicality as a signal transduction platform. Indeed, different e-chem aptasensor formats have been published before, including labelled and label-free sensors. In screening the viability of three commonly used methods – including labelled and label-free, as well voltammetric and impedance-based methods – we find that each of them suffers from instability of the aptamer-functionalised electrode. This instability compromises our ability to resolve real signals and prompted us to develop ways to understand – and suppress – this baseline drift.</p> <p>The functionalization of the electrode is the critical step in terms of self-assembled monolayer (SAM) stability and SAM aptamer density. Consequently, different protocols of SAMformation were explored and evaluated with respect to stability. We find that instability arises from the uncontrolled arrangement of thiolated aptamers on gold electrodes (including aptamers lying down on the electrode), which is in turn affected by the density of aptamers that can be coupled to the surface. As a consequence, a new protocol is developed using disulfide aptamer pairs to increase the density of correctly tethered aptamers, and generate a stable SAM.</p> <p>Because of the high sensitivity of electrochemical platforms, numerous spurious electrochemical signals may be produced, and controlled for in order to confirm a positive ligand-binding signal. The specificity of the aptamer-target interaction can be checked by testing the response with an interferent molecule, or by substituting the aptamer with a non-binding nucleotide sequence. In this work, these control experiments reveal that target and interferent molecules interact directly (and in different ways) with the bare gold surface, as well as perturbing signals from the aptamer in ways that cannot be linked to a specific aptamer-ligand complex formation. Ultimately, these spurious signals compromise our ability to confirm a real binding signal.</p> <p>The results from this work provide the first clear picture of how an aptamer binds to its small molecule target – which we find is entropically driven, and with only minor structural change induced in the aptamer stem. In addition, the label-free EIS measurements on aptamer SAM electrodes reveal the nature of instabilities, and reveal spurious signals that cannot be sufficiently suppressed at this stage. This knowledge highlights the difficulty in fabricating e-chem aptasensors, and will assist in overcoming challenges faced during research and commercialization of aptasensors area, as well as contributing new insights into troubleshooting, data acquisition, and data validation.</p>


Sign in / Sign up

Export Citation Format

Share Document