Diversification of nitrogen sources as a tool to improve endo-xylanase enzyme activity produced by Cryptococcus laurentii

2021 ◽  
Vol 32 ◽  
pp. 101941
Author(s):  
Deborah Murowaniecki Otero ◽  
Anna Rafaela Cavalcante Braga ◽  
Susana Juliano Kalil
2019 ◽  
Vol 15 (3) ◽  
Author(s):  
Trismillah

Cavendish banana peel can be used as a substitute for the expensive xylan, while molasses than as a source of carbon as well as nitrogen, minerals and nutrients needed for the growth of microbes that can produce the enzyme. Xylanase produced from Bacillus stearothermopillus DSM 22, using media cavendish banana peels with the addition of molasses 1%, 2%, and 3%. Fermentation is done in a shaker incubator at 550C temperature conditions, initial pH 8, and 250 rpm agitation. The result showed the highest enzyme activity of 4,14 ± 0,16 U/mL min., on the addition 2% molasses after 24 hours. Further fermentation carried out in the fermenter working volume of 3.5 liters, with the condition of temperature 550C, pH 8, aeration 1 vvm, agitation 250 rpm, the highest spesific enzyme of activity of 51,62 ± 0,16 U/mg after 24 hours. Partial purification of xylanase enzyme fermentation is done with the results of microfiltration, ultrafiltration, ammonium sulfate (0-80%) and dialysis. There is an increase in the purity of the enzyme at each stage of purification, the highest purity on dialysis 3.23 times of crude enzymes.Kulit buah pisang kapendis dapat digunakan sebagai pengganti xilan yang harganya mahal, sementara molases selain sebagai sumber karbon serta nitrogen, mineral dan nutrisi dibutuhkan untuk pertumbuhan mikroba yang dapat menghasilkan enzim. Xilanase yang dihasilkan dari Bacillus stearothermopillus DSM 22, menggunakan media kulit pisang kapendis dengan penambahan molase 1%, 2%, dan 3%. Fermentasi dilakukan dalam shaker inkubator pada temperatur 550C, pH awal 8, dan agitasi 250 rpm. Hasilnya menunjukkan aktivitas enzim tertinggi 4,14 ± 0,16 U/mL min., pada penambahan 2% molases setelah 24 jam. Selanjutnya fermentasi dilakukan di dalam fermentor, volume kerja dari 3,5 liter, dengan kondisi temperatur 550C, pH 8, aeration 1 vvm, agitasi 250 rpm, aktivitas spesifik tertinggi 51,62 ± 0,16 U/mg setelah 24 jam. Pemurnian parsial fermentasi enzim xilanase dilakukan dengan hasil mikrofiltrasi, ultrafiltrasi, amonium sulfat (0-80%) dan dialisis. Ada peningkatan kemurnian enzim pada setiap tahap pemurnian, kemurnian tertinggi pada dialisis 3,23 kali dari enzim kasar.Keywords: Xylanase, B. stearothermophillus DSM 22, Cavendish banana peel, molasses, enzyme activity


1980 ◽  
Vol 35 (11-12) ◽  
pp. 952-957 ◽  
Author(s):  
Ludwig Bergmann ◽  
Jens-Dirk Schwenn ◽  
Herbert Urlaub

Abstract Photoheterotrophic and heterotrophic cell suspension cultures of Nicotiana tabacum have been examined for changes in specific activity of ATP-sulfurylase (EC 2.1.1 A) and OAS-sulfhydrylase (EC 4.2.99.8) during growth on different nitrogen sources. During exponential growth the specific activity of ATP-sulfurylase and OAS-sulfhydrylase remained constant and was on the same level in cells with high and with low rates of sulfate assimilation. The specific activity of both enzymes rapidly increased in green photoheterotrophic cells as well as in chloroplast-free heterotrophic cells after the sulfur from the medium had been used up. This increase was reversed when the cells were transfered back to a sulfate supplemented nutrient solution. The changes in enzyme activity due to sulfur depletion seem to indicate a regulatory mechanism for these enzymes.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Sevanan Murugan ◽  
Donna Arnold ◽  
Uma Devi Pongiya ◽  
P.M. Narayanan

Saw dust was used as substrate for xylanase production from Arthrobacter sp. MTCC 6915. The study of period of incubation, temperature, pH, carbon, and nitrogen sources for xylanase production was optimized. Xylanase production was found to be optimum at an incubation period of 96 hrs (117.0 U/mL), temperature 30°C (105.0 U/mL), and pH 9.0 (102.9 U/mL). The results showed that the xylanase production was found to be higher in the presence of carboxymethylcellulose (176.4 U/mL) and dextrose (126.0 U/mL). It was also observed that peptone (170.1 U/mL) and beef extract (161.7 U/mL) supported maximum xylanase production.The enzyme was characterized and found to be fairly active at pH 9 (764.4 U/mL) and temperature 60°C (819 U/mL). Even in the present study, a major difference in the production temperature (30°C) and optimal temperature (60°C) of the enzyme activity was observed. However, the pH of the production media and the enzyme activity were found to be the same (pH 9).


2021 ◽  
Vol 50 (2) ◽  
pp. 395-404
Author(s):  
Faozia Faleha Sadida ◽  
Ma Manchur

A highly cellulolytic actinomycete SR1 was locally isolated from rice straw and provisionally identified as Thermomonospora viridis. Optimum pH, temperature, carbon and nitrogen sources for its cellulase production were 6.5, 35°C, Carboxymethyl cellulase (CMC) and yeast extract, respectively whereas those of cellulase activity were 7.5, 40°C, CMC and peptone respectively. The effects of various metal ions and different reductant and inhibitors on its cellulase activity were investigated. Univalent Ag+ was found to decrease the enzyme activity whereas increased by bivalent Mg2+. Ethylene diamine tetraacetic acid (EDTA) caused remarkable decrease of cellulase activity but β-Mercaptoethanol stimulated its cellulase activity. Bangladesh J. Bot. 50(2): 395-404, 2021 (June)


REAKTOR ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 32-37
Author(s):  
Diah Meilany ◽  
Dewinka Anugeraheni ◽  
Abdul Aziz ◽  
Made Tri Ari Penia Kresnowati ◽  
Tjandra Setiadi

The biological route to produce xylitol from Oil Palm Empty Fruit Bunches (EFBs) comprises of EFBs pretreatment, enzymatic hydrolysis, fermentation, and downstream separation of the produced xylitol. Due to the specificity in the hemicellulose composition of EFBs, a xylanase enzyme that has a high affinity to EFBs is required to hydrolyze the EFBs into xylose. In this research, the influences of aeration, humidity, and mixing in xylanase production were mapped. The xylanase production was performed by Aspergillus fumigatus ITBCCL170 in a solid-state fermentation using a tray fermenter with EFBs as the substrate. The optimal configuration was further scaled up into xylanase production using 1000 g of EFBs as the substrate. The results showed that the highest enzyme activity was 236.3 U/g EFB, obtained from the use of humid air airflow of 0.1 LPM, and mixing was performed once a day. The scaling up resulted in a lower xylanase activity and call for a better design of the fermenter.Keywords: aeration, humidity, mixing, OPEFBs, tray fermenter, xylanase, xylitol


2013 ◽  
Vol 6 ◽  
pp. 54-77
Author(s):  
Ramprasad Kuncham ◽  
K.T. Gurumurthy ◽  
N. Chandan ◽  
Aamir Javed ◽  
L.S. Ashwini ◽  
...  

Microbial conversions are gaining importance in the synthesis of important drug metabolites and their intermediates as they are good alternative to chemical synthesis since they are enantio-selective and regio-selective and even can be carried out at ambient temperature and atmospheric pressure. Till date, biocatalytic reduction of acetophenone and its derivatives has been widely reported. In the present study, we have made an attempt to carry out the microbial bioreduction of o-hydroxyacetophenone by screening some of the selected microorganisms which were obtained from culture collection centre as well as those which are isolated in our Microbiology lab. The selected microorganisms include Aspergillus ochraceous, Aspergillus flavus, Aspergillus tubingenesis, Aspergillus niger, Rhizopus stolanifer MTCC 162, Rhizopus stolanifer MTCC 2591 and Baker’s yeast.Among the seven microorganisms screened for the bioreduction of o-hydroxyacetophenone, Baker’s yeast and Aspergillus tubingenesis showed significant bioconversion where as Aspergillus ochraceous exhibited the least bioconversion.In our earlier study it was found that Aspergillus flavus has the required bioreductase enzyme, which showed the maximum conversion of p-chloroacetophenone to p-chlorophenylethanol. Hence optimization of culture conditions to get maximum enzyme expression and hence maximum conversion was thought off. The parameters considered for the study include effect of various Carbon sources, Nitrogen source, Metal ions, incubation Temperature and media pH on enzyme expression. The optimized culture a condition at which maximum bioconversion was achieved was maltose among various carbon sources. Tryptone was found to have maximum effect among the nitrogen sources. Media pH 7.6 and incubation temperature of 35 °C was found to be favourable for maximum enzyme activity. Among various divalent metal salts, addition of magnesium sulphate to the media significantly increased the enzyme activity.


2021 ◽  
Vol 2 (4) ◽  
pp. 1-16
Author(s):  
Ibrahim Sani ◽  
Aminu Argungu Umar ◽  
Evelyn Uzoamaka Udeze

The aim of this research was to produce Streptomyces-extracellular chitinase and screen its antifungal activity on a clinically isolated Candida albicans. The Streptomyces were isolated from an agricultural farmland; they were identified and screened for the chitinase production. Effects of time, temperature, pH and nitrogen sources on the chitinase production were determined using standard methods. Ammonium sulphate precipitation was used to partially purify the chitinase. Protein concentrations were determined spectrophotometrically using bovine serum albumin as standard. Agar-well diffusion method was used to evaluate the antifungal activity of the chitinase on C. albicans. The isolated Streptomyces were of three (3) strains, and all the strains are Gram positive, catalase positive, oxidase positive while, Strain A and C are indole positive and only Strain B is citrate positive. The maximum chitinase production was at 72 h, 40°C and when yeast extract was used as the nitrogen source. Ammonium sulphate (80%) precipitation yielded the highest enzyme activity of 39.0U/ml. The maximum enzyme activity was observed at temperature of 40oC, pH 5.5 and 1.0% colloidal chitin (substrate). The partially purified chitinase showed a zone of inhibition of 20.11 ± 1.26 mm against the Candida albicans. This result has no significant difference (P>0.05) when compared with that of the standard drug (Fluconazole) with 21.42 ± 0.08 mm zone of inhibition. These findings suggest that Streptomyces at favourable conditions produce chitinase, and this enzyme can be used as an antifungal agent on Candida albicans and other chitin containing fungi.


1973 ◽  
Vol 19 (10) ◽  
pp. 1187-1196 ◽  
Author(s):  
M. W. Zink ◽  
J. S. Katz

The levels of the NADP-specific malic enzyme in Fusarium oxysporum are controlled by both the carbon and nitrogen sources in which the cells are grown. The enzyme is not induced by malate; maximum activity is obtained when the mycelium is grown on sucrose or ethanol. With ammonium sulfate as the nitrogen source, one enzyme-activity peak is obtained by 40 h, while in the presence of potassium nitrate this peak is repressed, with a peak appearing at a later stage of growth. In ammonium nitrate, two enzyme-activity peaks are present, one corresponding to the peak present in ammonium sulfate and the other to the peak present in potassium nitrate grown cells.When the initial velocities are plotted against increasing malate concentration non-Michaelis–Menton kinetics are obtained. The double-reciprocal plots are biphasic and Rs values of 161 are obtained. Hill plots prepared from initial velocity data show that at low malate concentration, the slope of the line is 0.87, and it decreases to 0.45 at 1.32 × 10−3 M malate. With increasing malate concentration the slope increased to a value of 1.0. It appears that this type of kinetic behavior is typical of a system in which there is negative cooperativity with respect to ligand binding with concurrent progressive substrate activation.


Sign in / Sign up

Export Citation Format

Share Document