Composite hydrogel scaffolds incorporating decellularized adipose tissue for soft tissue engineering with adipose-derived stem cells

Biomaterials ◽  
2014 ◽  
Vol 35 (6) ◽  
pp. 1914-1923 ◽  
Author(s):  
Hoi Ki Cheung ◽  
Tim Tian Y. Han ◽  
Dale M. Marecak ◽  
John F. Watkins ◽  
Brian G. Amsden ◽  
...  
Biomaterials ◽  
2007 ◽  
Vol 28 (26) ◽  
pp. 3834-3842 ◽  
Author(s):  
Lauren Flynn ◽  
Glenn D. Prestwich ◽  
John L. Semple ◽  
Kimberly A. Woodhouse

2022 ◽  
Author(s):  
Katarína Kacvinská ◽  
Martina Trávničková ◽  
Lucy Vojtová ◽  
Petr Poláček ◽  
Jana Dorazilová ◽  
...  

Abstract This study deals with cellulose derivatives in relation to the collagen fibrils in composite collagen-cellulose scaffolds for soft tissue engineering. Two types of cellulose, i.e., oxidized cellulose (OC) and carboxymethyl cellulose (CMC), were blended with collagen (Col) to enhance its elasticity, stability and sorptive biological properties, e.g. hemostatic and antibacterial features. The addition of OC supported the resistivity of the Col fibrils in a dry environment, while in a moist environment OC caused a radical drop. The addition of CMC reduced the mechanical strength of the Col fibrils in both environments. The elongation of the Col fibrils was increased by both types of cellulose derivatives in both environments, which is closely related to tissue like behaviour. In these various mechanical environments, the ability of human adipose-derived stem cells (hADSCs) to adhere and proliferate was significantly greater in the Col and Col/OC scaffolds than in the Col/CMC scaffold. This is explained by deficient mechanical support and loss of stiffness due to the high swelling capacity of CMC. Although Col/OC and Col/CMC acted differently in terms of mechanical properties, both materials were observed to be cytocompatible, with varying degrees of further support for cell adhesion and proliferation. While Col/OC can serve as a scaffolding material for vascular tissue engineering and for skin tissue engineering, Col/CMC seems to be more suitable for moist wound healing, e.g. as a mucoadhesive gel for exudate removal, since there was almost no cell adhesion.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3210
Author(s):  
Diana Câmara ◽  
Jamil Shibli ◽  
Eduardo Müller ◽  
Paulo De-Sá-Junior ◽  
Allan Porcacchia ◽  
...  

Mesenchymal stem cells (MSCs) have been isolated from a variety of tissues using different methods. Active research have confirmed that the most accessible site to collect them is the adipose tissue; which has a significantly higher concentration of MSCs. Moreover; harvesting from adipose tissue is less invasive; there are no ethical limitations and a lower risk of severe complications. These adipose-derived stem cells (ASCs) are also able to increase at higher rates and showing telomerase activity, which acts by maintaining the DNA stability during cell divisions. Adipose-derived stem cells secret molecules that show important function in other cells vitality and mechanisms associated with the immune system, central nervous system, the heart and several muscles. They release cytokines involved in pro/anti-inflammatory, angiogenic and hematopoietic processes. Adipose-derived stem cells also have immunosuppressive properties and have been reported to be “immune privileged” since they show negative or low expression of human leukocyte antigens. Translational medicine and basic research projects can take advantage of bioprinting. This technology allows precise control for both scaffolds and cells. The properties of cell adhesion, migration, maturation, proliferation, mimicry of cell microenvironment, and differentiation should be promoted by the printed biomaterial used in tissue engineering. Self-renewal and potency are presented by MSCs, which implies in an open-source for 3D bioprinting and regenerative medicine. Considering these features and necessities, ASCs can be applied in the designing of tissue engineering products. Understanding the heterogeneity of ASCs and optimizing their properties can contribute to making the best therapeutic use of these cells and opening new paths to make tissue engineering even more useful.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 902
Author(s):  
Madhumita Patel ◽  
Won-Gun Koh

Composite hydrogels with electrospun nanofibers (NFs) have recently been used to mimic the native extracellular matrix. In this study, composite hydrogels of methacrylated hyaluronic acid containing fragmented polycaprolactone NFs were used for bone tissue engineering. The composite (NF/hydrogel) was crosslinked under ultraviolet (UV) light. The incorporation of fragmented polycaprolactone NFs increased the compression modulus from 1762.5 to 3122.5 Pa. Subsequently, adipose-derived stem cells incorporated into the composite hydrogel exhibited a more stretched and elongated morphology and osteogenic differentiation in the absence of external factors. The mRNA expressions of osteogenic biomarkers, including collagen 1 (Col1), alkaline phosphatase, and runt-related transcription factor 2, were 3–5-fold higher in the composite hydrogel than in the hydrogel alone. In addition, results of the protein expression of Col1 and alizarin red staining confirmed osteogenic differentiation. These findings suggest that our composite hydrogel provides a suitable microenvironment for bone tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document