Transition metal promoted combustion of rice husk and rice straw towards an energy optimized synthesis of biogenic silica

2021 ◽  
Vol 155 ◽  
pp. 106282
Author(s):  
Alexander M. Grimm ◽  
Leonhard Y. Dorsch ◽  
Gert H. Kloess ◽  
Dirk Enke ◽  
Andreas Roppertz
2019 ◽  
Vol 9 (6) ◽  
pp. 1083 ◽  
Author(s):  
Hossein Beidaghy Dizaji ◽  
Thomas Zeng ◽  
Ingo Hartmann ◽  
Dirk Enke ◽  
Thomas Schliermann ◽  
...  

Utilization of biomass either as a renewable energy source or for the generation of biogenic materials has received considerable interest during the past years. In the case of rice husk (RH) and rice straw (RS) with high silica contents in the fuel ash, these approaches can be combined to produce high-grade biogenic silica with purities >98 wt % from combustion residues. The overall process can be considered nearly neutral in terms of CO2 emission and global warming, but it can also address disposal challenges of rice husk and rice straw. For the resulting biogenic silica, several advanced application opportunities exist, e.g., as adsorbents, catalysts, drug delivery systems, etc. This article provides a comprehensive literature review on rice husk and rice straw combustion as well as applied strategies for raw material pre-treatment and/or post-treatment of resulting ashes to obtain high quality biogenic silica. Purity of up to 97.2 wt % SiO2 can be reached by combustion of untreated material. With appropriate fuel pre-treatment and ash post-treatment, biogenic silica with purity up to 99.7 wt % can be achieved. Studies were performed almost exclusively at a laboratory scale.


Biochar ◽  
2021 ◽  
Author(s):  
Meng Wang ◽  
Negar D. Tafti ◽  
Jim J. Wang ◽  
Xudong Wang

AbstractRecent studies have shown that silicon (Si) dissolution from biochar may be influenced by the pyrolysis temperature. In addition, the enhancement of biochar by treatment with alkali has been proposed to produce a Si source that can be used for environmentally friendly plant disease control. In this study, biochars from rice straw and rice husk pretreated with KOH, CaO and K2CO3 and then pyrolyzed at 350, 450 and 550 °C were prepared to evaluate the effects of pyrolysis temperature on Si release and plant uptake from alkali-enhanced Si-rich biochar. Extractable Si and dissolution Si from the prepared biochars were assessed by different short-term chemical methods and long-term (30-day) release in dilute acid and neutral salt solutions, respectively, along with a rice potting experiment in greenhouse. For both rice straw- and husk-derived alkali-enhanced biochars (RS-10KB and HS-10K2B, respectively), increasing the pyrolysis temperature from 350 to 550 °C generally had the highest extractable Si and increased Si content extracted by 5-day sodium carbonate and ammonium nitrate (5dSCAN) designated for fertilizer Si by 61–142%, whereas non-enhanced biochars had more extractable Si at 350 °C. The alkali-enhanced biochars produced at 550 °C pyrolysis temperature also released 82–172% and 27–79% more Si than that of 350 °C produced biochar in unbuffered weak acid and neutral salt solutions, respectively, over 30 days. In addition, alkali-enhanced biochars, especially that derived from rice husk at 550 °C facilitated 6–21% greater Si uptake by rice and 44–101% higher rice grain yields than lower temperature biochars, non-enhanced biochars, or conventional Si fertilizers (wollastonite and silicate calcium slag). Overall, this study demonstrated that 550 °C is more efficient than lower pyrolysis temperature for preparing alkali-enhanced biochar to improve Si release for plant growth.


2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Eryani . ◽  
Sri Aprilia ◽  
Farid Mulana

<p>Agricultural waste such as rice straw, rice husk and rice husk ash have not been utilized properly. This waste of agricultural produce can actually be used as an alternative to bionanofiller because it contains an excellent source of silica. The silica content contained in the rice waste when combined with the polymer matrix can produce composites having high thermal and mechanical properties. Characterization of bionanofiller from this rice waste is done by SEM, XRF, FTIR, XRD and particle density. The result of SEM analysis from this rice waste is feasible to be used as filler because it has size 1 μm. Likewise with the results of XRF analysis that rice waste contains a high enough silica component that is 80.6255% - 89.83%. FTIR test results also show that bionanoparticles from rice waste have the same content of silica. In the XRD analysis the best selective gain of rice waste is found in rice husk ash which is characteristic of amorp silica at a range of 2ϴ = 22<br />. The largest density analysis of paddy waste was found in rice husk 0.0419 gr / cm , followed by rice straw by of 0.0417 gr / cm 3 and rice hulk ash 0.0407 g / cm 3</p>


Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1440 ◽  
Author(s):  
Sanjeev K. Sharma ◽  
Ashish R. Sharma ◽  
Sudheer D. V. N. Pamidimarri ◽  
Jyotshana Gaur ◽  
Beer Pal Singh ◽  
...  

Biogenic silica (b-SiO2) nanopowders from rice husk ash (RHA) were prepared by chemical method and their bacterial compatibility/toxicity was analyzed. The X-ray diffractometry (XRD) patterns of the b-SiO2 nanopowders indicated an amorphous feature due to the absence of any sharp peaks. Micrographs of the b-SiO2 revealed that sticky RHA synthesized SiO2 nanopowder (S1) had clustered spherical nanoparticles (70 nm diameter), while b-SiO2 nanopowder synthesized from red RHA (S2) and b-SiO2 nanopowder synthesized from brown RHA (S3) were purely spherical (20 nm and 10 nm diameter, respectively). Compared to the S1 (11.36 m2g−1) and S2 (234.93 m2g−1) nanopowders, the S3 nanopowders showed the highest surface area (280.16 m2g−1) due to the small particle size and high porosity. The core level of the X-ray photoelectron spectroscopy (XPS) spectra showed that Si was constituted by two components, Si 2p (102.2 eV) and Si 2s (153.8 eV), while Oxygen 1s was observed at 531.8 eV, confirming the formation of SiO2. The anti-bacterial activity of the b-SiO2 nanopowders was investigated using both gram-positive (Escherichia coli) and gram-negative (Staphylococcus aureus) microorganisms. Compared to S2 and S3 silica nanopowders, S1 demonstrated enhanced antibacterial activity. This study signifies the medical, biomedical, clinical, and biological importance and application of RHA-mediated synthesized b-SiO2.


Proceedings ◽  
2019 ◽  
Vol 36 (1) ◽  
pp. 29
Author(s):  
Ali ◽  
Shahadat ◽  
Rashid

Crop cultivation in the coastal saline area of Bangladesh during rabi season is limited due to late harvest of Aman rice, shorter winter period, difficulty in tillage, soil salinity, lack of fresh irrigation water etc. Zero tillage potato cultivation with mulching could minimize these obstacles and thereby increase system productivity. However, selection of mulching material is crucial for higher yield and economic return. An experiment was conducted at coastal saline area of Bangladesh during rabi 2018–19 to observe zero tillage potato performance under different mulch materials. Three locally available mulch materials were employed in the trial viz. rice straw (T1), rice husk (T2) and compost (T3) as control. Additionally, treatment T1 and T2 also received same amount of compost as T3. Results from single factor randomized complete block design with three replications showed that leaf dry matter, leaf area index and number of tuber per plant did not varied significantly. Significantly highest stem and root dry matter were found from T1 (69.56 kg ha−1) and T3 (138.92 kg ha−1), respectively. Rice husk (T2) produced numerically highest leaf dry matter (372.74 kg ha−1) and significantly lowest root dry matter (87.92 kg ha−1), which ultimately produced highest tuber yield (13.99 t ha−1) followed by rice straw (T1) (11.08 t ha−1). However, weed growth was highest in rice husk (1.16 t ha−1). Mulch treatments conserved 3.5 to 7.45% more moisture and 4.3% less salinity than control. Between two mulches rice straw is suggested for its profitability since it remains unused and readily available.


2017 ◽  
Vol 237 ◽  
pp. 57-63 ◽  
Author(s):  
Bijoy Biswas ◽  
Nidhi Pandey ◽  
Yashasvi Bisht ◽  
Rawel Singh ◽  
Jitendra Kumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document