Biochemical methane potential and anaerobic biodegradability of non-herbaceous and herbaceous phytomass in biogas production

2012 ◽  
Vol 125 ◽  
pp. 226-232 ◽  
Author(s):  
Jin M. Triolo ◽  
Lene Pedersen ◽  
Haiyan Qu ◽  
Sven G. Sommer
2016 ◽  
Vol 18 (3) ◽  
pp. 516-526 ◽  

<div> <p>Biogas production through anaerobic co-digestion of a mixture of cattle manure and citrus waste using an experimental facility for testing the biochemical methane potential (BMP) was investigated. No buffer solution is added to the mixture in order to use the buffer capacity from cattle manure. Regular measurements of pH, alkalinity, chemical oxygen demand, methane and biogas net production were performed. Three substrate inoculum ratios (SIR) 1:1, 2:1 and 3:1 (g COD/g VSS) were evaluated. Maximum COD removals of 56.4 %, 51.3 % and 48.0 % for the SIRs 1:1, 2:1 and 3:1 were obtained. For all SIR, pH was on the range of 6.5 to 7.5, while the maximum VFA concentration was 4250 mg CH<sub>3</sub>COOH l<sup>-1</sup>. Alkalinity ranged between 2250 to 4500 mg CaCO<sub>3 </sub>l<sup>-1</sup>. Both maximum methane production rate (MMPR) and percentage of anaerobic biodegradability were established. BMP of 94.3 to 146.6 mL<sub>STP-CH4</sub>/gVSS were calculated for the ratios 1:1 and 3:1, respectively. The highest feasibility for biogas production and methane was established for SIR 3:1.</p> </div> <p>&nbsp;</p>


2021 ◽  
Vol 11 (7) ◽  
pp. 3064
Author(s):  
Roberta Mota-Panizio ◽  
Manuel Jesús Hermoso-Orzáez ◽  
Luis Carmo-Calado ◽  
Gonçalo Lourinho ◽  
Paulo Sérgio Duque de Brito

The present study evaluates the digestion of cork boiling wastewater (CBW) through a biochemical methane potential (BMP) test. BMP assays were carried out with a working volume of 600 mL at a constant mesophilic temperature (35 °C). The experiment bottles contained CBW and inoculum (digested sludge from a wastewater treatment plant (WWTP)), with a ratio of inoculum/substrate (Ino/CBW) of 1:1 and 2:1 on the basis of volatile solids (VSs); the codigestion with food waste (FW) had a ratio of 2/0.7:0.3 (Ino/CBW:FW) and the codigestion with cow manure (CM) had a ratio of 2/0.5:0.5 (Ino/CBW:CM). Biogas and methane production was proportional to the inoculum substrate ratio (ISR) used. BMP tests have proved to be valuable for inferring the adequacy of anaerobic digestion to treat wastewater from the cork industry. The results indicate that the biomethane potential of CBWs for Ino/CBW ratios 1:1 and 2:1 is very low compared to other organic substrates. For the codigestion tests, the test with the Ino/CBW:CM ratio of 2/0.7:0.3 showed better biomethane yields, being in the expected values. This demonstrated that it is possible to perform the anaerobic digestion (AD) of CBW using a cosubstrate to increase biogas production and biomethane and to improve the quality of the final digestate.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3644
Author(s):  
Sangmin Kim ◽  
Seung-Gyun Woo ◽  
Joonyeob Lee ◽  
Dae-Hee Lee ◽  
Seokhwan Hwang

Anaerobic digestion (AD) of secondary sludge is a rate-limiting step due to the bacterial cell wall. In this study, experiments were performed to characterize secondary sludges from three wastewater treatment plants (WWTPs), and to investigate the feasibility of using bacteriophage lysozymes to speed up AD by accelerating the degradation of bacterial cell walls. Protein was the main organic material (67.7% of volatile solids in the sludge). The bacteriophage T4 lysozyme (T4L) was tested for hydrolysis and biochemical methane potential. Variations in the volatile suspended solid (VSS) concentration and biogas production were monitored. The VSS reduction efficiencies by hydrolysis using T4L for 72 h increased and ranged from 17.8% to 26.4%. Biogas production using T4L treated sludges increased and biogas production was increased by as much as 82.4%. Biogas production rate also increased, and the average reaction rate coefficient of first-order kinetics was 0.56 ± 0.02/d, which was up to 47.5% higher compared to the untreated samples at the maximum. Alphaproteobacteria, Betaproteobacteria, Flavobacteriia, Gammaproteobacteria, and Sphingobacteriia were major microbial classes in all sludges. The interpretation of the microbial community structure indicated that T4L treatment is likely to increase the rate of cell wall digestion.


2012 ◽  
Vol 66 (7) ◽  
pp. 1416-1423 ◽  
Author(s):  
C. P. Pabón Pereira ◽  
G. Castañares ◽  
J. B. van Lier

A protocol was developed for determining the biochemical methane potential (BMP) of plant material using the OxiTop® system. NaOH pellets for CO2 absorption and different pretreatment methods were tested for their influence in the BMP test. The use of NaOH pellets in the headspace of the bottle negatively affected the stability of the test increasing the pH and inhibiting methanization. Sample comminution increased the biodegradability of plant samples. Our results clearly indicate the importance of test conditions during the assessment of anaerobic biodegradability of plant material, considering BMP differences as high as 44% were found. Guidelines and recommendations are given for screening plant material suitable for anaerobic digestion using the OxiTop® system.


Molecules ◽  
2020 ◽  
Vol 25 (2) ◽  
pp. 296 ◽  
Author(s):  
Georgia Antonopoulou ◽  
Dimitrios Vayenas ◽  
Gerasimos Lyberatos

Various pretreatment methods, such as thermal, alkaline and acid, were applied on grass lawn (GL) waste and the effect of each pretreatment method on the Biochemical Methane Potential was evaluated for two options, namely using the whole slurry resulting from pretreatment or the separate solid and liquid fractions obtained. In addition, the effect of each pretreatment on carbohydrate solubilization and lignocellulossic content fractionation (to cellulose, hemicellulose, lignin) was also evaluated. The experimental results showed that the methane yield was enhanced with alkaline pretreatment and, the higher the NaOH concentration (20 g/100 gTotal Solids (TS)), the higher was the methane yield observed (427.07 L CH4/kg Volatile Solids (VS), which was almost 25.7% higher than the BMP of the untreated GL). Comparing the BMP obtained under the two options, i.e., that of the whole pretreatment slurry with the sum of the BMPs of both fractions, it was found that direct anaerobic digestion without separation of the pretreated biomass was favored, in almost all cases. A preliminary energy balance and economic assessment indicated that the process could be sustainable, leading to a positive net heat energy only when using a more concentrated pretreated slurry (i.e., 20% organic loading), or when applying NaOH pretreatment at a lower chemical loading.


2011 ◽  
Vol 22 ◽  
pp. S146
Author(s):  
Jin M Triolo ◽  
Sven G Sommer ◽  
Henrik B Moller ◽  
Martin R Weisbjerg ◽  
Xinyuan Jiang

Author(s):  
Zuhaib Siddiqui ◽  
N.J. Horan ◽  
Kofi Anaman

Biomethane production from processed industrial food waste (IFW) in admixture with sewage sludge (primary and waste activated sludge: PS and WAS) was evaluated at a range of C:N ratios using a standard biochemical methane potential (BMP) test. IFW alone had a C:N of 30 whereas for WAS it was 5.4 and thus the C:N ratio of the blends fell in that range. Increasing the IFW content in mix improves the methane potential by increasing both the cumulative biogas production and the rate of methane production. Optimum methane yield 239 mL/g VSremoved occurred at a C:N ratio of 15 which was achieved with a blend containing 11 percent (w/w) IFW. As the fraction of IFW in the blend increased, volatile solids (VS) destruction was increased and this led to a reduction in methane yield and amount of production. The highest destruction of volatile solids of 93 percent was achieved at C:N of 20 followed by C:N 30 and 15. A shortened BMP test is adequate for evaluating optimum admixtures.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Vidhya Prabhudessai ◽  
Anasuya Ganguly ◽  
Srikanth Mutnuri

The focus of our work is on anaerobic digestion of locally available agro wastes like coconut oil cake, cashew apple waste, and grass from lawn cuttings. The most productive agro waste, in terms of methane yield, was coconut oil cake and grass. The results showed that the initial volatile solids concentration significantly affected the biogas production. The methane yield from coconut oil cake was found to be 383 ml CH4/g VS and 277 ml CH4/g VS added at 4 and 4.5 g VS/l. In case of grass the biogas production increased with increasing VS concentrations with methane yield of 199, 250, 256, 284, and 332 ml CH4/g VS at 3, 3.5, 4, 4.5, and 5.0 g VS/l. For cashew apple waste single-stage fermentation inhibited biogas production. However, phase separation showed methane yield of 60.7 ml CH4/g VS and 64.6 ml CH4/g VS at 3.5 and 4.0 g VS/l, respectively. The anaerobic biodegradability of coconut oil cake was evaluated in fed batch mode in a 5 L anaerobic reactor at 4 g VS/L per batch, and the maximum methane yield was found to be 320 ml CH4/g VS.


2021 ◽  
Vol 924 (1) ◽  
pp. 012071
Author(s):  
N A Rohma ◽  
S Suhartini ◽  
I Nurika

Abstract Production of biogas from lignocellulosic biomass by anaerobic digestion (AD) has attracted much interest. Oil palm empty fruit bunches (OPEFB), one of lignocellulosic biomass, is highly abundant in Indonesia and has potential as feedstock for bioenergy production such as biogas or methane. Yet, pre-treatments are needed to improve biogas production due to its complex crystalline structures. Chemical pre-treatments with acid or alkaline solution were reported to increase cellulose or highly reduce the lignin content of OPEFB. This study aimed to evaluate the effect of acid and alkaline pre-treatments on the characteristics of OPEFB and methane potential. The acid pre-treatment experimental design was used factor of H2SO4 concentration (1, 1.3, and 1.6 (%v/v)) and NaOH concentration (1.8, 2.8, and 3.8 (%w/v)). Methane potential evaluation was carried out using the biochemical methane potential (BMP) test with the Automatic Methane Potential Test System (AMPTS) II under mesophilic condition (37°C), operated for 28 days. The results showed that both dilute acid and alkaline pre-treatment positively impact altering the characteristics of OPEFB, hence the specific methane potential. Alkaline pre-treatment with NaOH 3.8 (%w/v) gave the highest average SMP value of 0.161 ± 0.005 m3 CH4/kgVSadded.


Sign in / Sign up

Export Citation Format

Share Document