scholarly journals Biogas Production from Physicochemically Pretreated Grass Lawn Waste: Comparison of Different Process Schemes

Molecules ◽  
2020 ◽  
Vol 25 (2) ◽  
pp. 296 ◽  
Author(s):  
Georgia Antonopoulou ◽  
Dimitrios Vayenas ◽  
Gerasimos Lyberatos

Various pretreatment methods, such as thermal, alkaline and acid, were applied on grass lawn (GL) waste and the effect of each pretreatment method on the Biochemical Methane Potential was evaluated for two options, namely using the whole slurry resulting from pretreatment or the separate solid and liquid fractions obtained. In addition, the effect of each pretreatment on carbohydrate solubilization and lignocellulossic content fractionation (to cellulose, hemicellulose, lignin) was also evaluated. The experimental results showed that the methane yield was enhanced with alkaline pretreatment and, the higher the NaOH concentration (20 g/100 gTotal Solids (TS)), the higher was the methane yield observed (427.07 L CH4/kg Volatile Solids (VS), which was almost 25.7% higher than the BMP of the untreated GL). Comparing the BMP obtained under the two options, i.e., that of the whole pretreatment slurry with the sum of the BMPs of both fractions, it was found that direct anaerobic digestion without separation of the pretreated biomass was favored, in almost all cases. A preliminary energy balance and economic assessment indicated that the process could be sustainable, leading to a positive net heat energy only when using a more concentrated pretreated slurry (i.e., 20% organic loading), or when applying NaOH pretreatment at a lower chemical loading.

Author(s):  
Zuhaib Siddiqui ◽  
N.J. Horan ◽  
Kofi Anaman

Biomethane production from processed industrial food waste (IFW) in admixture with sewage sludge (primary and waste activated sludge: PS and WAS) was evaluated at a range of C:N ratios using a standard biochemical methane potential (BMP) test. IFW alone had a C:N of 30 whereas for WAS it was 5.4 and thus the C:N ratio of the blends fell in that range. Increasing the IFW content in mix improves the methane potential by increasing both the cumulative biogas production and the rate of methane production. Optimum methane yield 239 mL/g VSremoved occurred at a C:N ratio of 15 which was achieved with a blend containing 11 percent (w/w) IFW. As the fraction of IFW in the blend increased, volatile solids (VS) destruction was increased and this led to a reduction in methane yield and amount of production. The highest destruction of volatile solids of 93 percent was achieved at C:N of 20 followed by C:N 30 and 15. A shortened BMP test is adequate for evaluating optimum admixtures.


2021 ◽  
Vol 11 (7) ◽  
pp. 3064
Author(s):  
Roberta Mota-Panizio ◽  
Manuel Jesús Hermoso-Orzáez ◽  
Luis Carmo-Calado ◽  
Gonçalo Lourinho ◽  
Paulo Sérgio Duque de Brito

The present study evaluates the digestion of cork boiling wastewater (CBW) through a biochemical methane potential (BMP) test. BMP assays were carried out with a working volume of 600 mL at a constant mesophilic temperature (35 °C). The experiment bottles contained CBW and inoculum (digested sludge from a wastewater treatment plant (WWTP)), with a ratio of inoculum/substrate (Ino/CBW) of 1:1 and 2:1 on the basis of volatile solids (VSs); the codigestion with food waste (FW) had a ratio of 2/0.7:0.3 (Ino/CBW:FW) and the codigestion with cow manure (CM) had a ratio of 2/0.5:0.5 (Ino/CBW:CM). Biogas and methane production was proportional to the inoculum substrate ratio (ISR) used. BMP tests have proved to be valuable for inferring the adequacy of anaerobic digestion to treat wastewater from the cork industry. The results indicate that the biomethane potential of CBWs for Ino/CBW ratios 1:1 and 2:1 is very low compared to other organic substrates. For the codigestion tests, the test with the Ino/CBW:CM ratio of 2/0.7:0.3 showed better biomethane yields, being in the expected values. This demonstrated that it is possible to perform the anaerobic digestion (AD) of CBW using a cosubstrate to increase biogas production and biomethane and to improve the quality of the final digestate.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Vidhya Prabhudessai ◽  
Anasuya Ganguly ◽  
Srikanth Mutnuri

The focus of our work is on anaerobic digestion of locally available agro wastes like coconut oil cake, cashew apple waste, and grass from lawn cuttings. The most productive agro waste, in terms of methane yield, was coconut oil cake and grass. The results showed that the initial volatile solids concentration significantly affected the biogas production. The methane yield from coconut oil cake was found to be 383 ml CH4/g VS and 277 ml CH4/g VS added at 4 and 4.5 g VS/l. In case of grass the biogas production increased with increasing VS concentrations with methane yield of 199, 250, 256, 284, and 332 ml CH4/g VS at 3, 3.5, 4, 4.5, and 5.0 g VS/l. For cashew apple waste single-stage fermentation inhibited biogas production. However, phase separation showed methane yield of 60.7 ml CH4/g VS and 64.6 ml CH4/g VS at 3.5 and 4.0 g VS/l, respectively. The anaerobic biodegradability of coconut oil cake was evaluated in fed batch mode in a 5 L anaerobic reactor at 4 g VS/L per batch, and the maximum methane yield was found to be 320 ml CH4/g VS.


2019 ◽  
Vol 38 (1) ◽  
pp. 88-99 ◽  
Author(s):  
Mohamad Adghim ◽  
Mohamed Abdallah ◽  
Suhair Saad ◽  
Abdallah Shanableh ◽  
Majid Sartaj

This study aimed to evaluate the methane potential of mono- and co-digested dairy farm wastes. The tested substrates included manure from lactating, dry, and young cows, as well as waste milk and feed waste. The highest methane yield was achieved from the lactating cow manure, which produced an average of 412 L of CH4 kg−1 volatile solids, followed by young and dry cow manures (332 and 273 L of CH4 kg−1 volatile solids, respectively). Feed and milk yielded an average of 325 and 212 L of CH4 kg−1 volatile solids, respectively. Co-digesting the manures from lactating and young cows with feed improved methane production by 7%. However, co-digesting the dry cow manure with feed achieved only 85% of the calculated methane yield. Co-digesting manure and milk at a ratio of 70:30 enhanced the methane potential from lactating, dry, and young cow manures by 19, 30, and 37%, respectively. Moreover, co-digesting lactating, dry, and young cow manures with milk at a ratio of 30:70 enhanced the methane yield by 60, 30, and 88%, respectively. The cumulative methane production of all samples was accurately described using the Gompertz model with a maximum error of 10%. Carbohydrates contributed the most to methane potential, while proteins and lipids were limiting.


2019 ◽  
Vol 35 (4) ◽  
pp. 1265-1273
Author(s):  
Saran Pansripong ◽  
Weerachai Arjharn ◽  
Pansa Liplap ◽  
Thipsuphin Hinsui

The effect of ultrasonic pretreatment on biogas production from rice straw was investigated. Results showed that the application of 37 and 102 kHz resulted in a reduction of hemicellulose about 25.78% and 20.82%, respectively. An increase in the power level and exposition time decreased the hemicellulose content. The biochemical methane potential values at 37 kHz and 102 kHz of the pretreated rice straw for a period of 45 days were 250.36 and 243.79 mL CH4 g VS-1added, which were about 21.95% and 18.75% increase compared to the unpretreated one, respectively. The pretreatment with 37 kHz has provided a better methane yield compared to the one with 102 kHz. Response surface methodology indicated a positive result toward the methane yield and production rate. The utilization of ultrasonic pretreatment toward rice straw for biogas production seems to provide a solution to help solving the problems of both agricultural waste and renewable energy.


2018 ◽  
Vol 67 ◽  
pp. 02047 ◽  
Author(s):  
Reigina Sandriaty ◽  
Cindy Priadi ◽  
Septiana Kurnianingsih ◽  
Ayik Abdillah

The generation of fat, oil and grease (FOG) waste can be a nuisance hazard, but also a potential for resource recovery. FOG waste can be utilized as nutrient and energy source through anaerobic digestion which may increase methane yield but also increase presence of inhibitors. Using the biochemical methane potential method, this research is aimed to determine the effect of FOG waste in the co-digestion process of food waste (FW) to produce biogas. The research was conducted for 42 days at 37°C using FOG waste codigested with FW of 3 different volatile solid (VS) rasio which are 0.125, 0.3, and 0.5. The results showed that FOG waste combined with FW has a methane yield that may reach up to 485 ± 36.8 mL CH4/gr VS, the highest one produced by the 0.125 VS rasio mix. While the ratio of FOG waste with FW at 0.3 and 0.5 only produce 128 ± 195 and 4 ± 1.45 mL CH4/gr VS, respectively. The ratio of 0.125 also demonstrates the highest COD reduction of 56% compared to the other ratio which indicates the 0.125 FOG and FW ratio can be implemented to utilize FOG waste and increase methane yield during anaerobic digestion process.


2014 ◽  
Vol 70 (4) ◽  
pp. 599-604 ◽  
Author(s):  
Bing Wang ◽  
Ivo Achu Nges ◽  
Mihaela Nistor ◽  
Jing Liu

In this work, biochemical methane potential (BMP) tests with cellulose as a model substrate were performed with the aid of three manually operated or conventional experimental setups (based on manometer, water column and gas bag) and one automated apparatus specially designed for analysis of BMP. The methane yields were 340 ± 18, 354 ± 13, 345 ± 15 and 366 ± 5 ml CH4/g VS obtained from experimental setups with manometer, water column, gas bag, and automatic methane potential test system, which corresponded to a biodegradability of 82, 85, 83 and 88% respectively. The results demonstrated that the methane yields of cellulose obtained from conventional and automatic experimental setups were comparable; however, the methane yield obtained from the automated apparatus showed greater precision. Moreover, conventional setups for the BMP test were more time- and labour-intensive compared with the automated apparatus.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3644
Author(s):  
Sangmin Kim ◽  
Seung-Gyun Woo ◽  
Joonyeob Lee ◽  
Dae-Hee Lee ◽  
Seokhwan Hwang

Anaerobic digestion (AD) of secondary sludge is a rate-limiting step due to the bacterial cell wall. In this study, experiments were performed to characterize secondary sludges from three wastewater treatment plants (WWTPs), and to investigate the feasibility of using bacteriophage lysozymes to speed up AD by accelerating the degradation of bacterial cell walls. Protein was the main organic material (67.7% of volatile solids in the sludge). The bacteriophage T4 lysozyme (T4L) was tested for hydrolysis and biochemical methane potential. Variations in the volatile suspended solid (VSS) concentration and biogas production were monitored. The VSS reduction efficiencies by hydrolysis using T4L for 72 h increased and ranged from 17.8% to 26.4%. Biogas production using T4L treated sludges increased and biogas production was increased by as much as 82.4%. Biogas production rate also increased, and the average reaction rate coefficient of first-order kinetics was 0.56 ± 0.02/d, which was up to 47.5% higher compared to the untreated samples at the maximum. Alphaproteobacteria, Betaproteobacteria, Flavobacteriia, Gammaproteobacteria, and Sphingobacteriia were major microbial classes in all sludges. The interpretation of the microbial community structure indicated that T4L treatment is likely to increase the rate of cell wall digestion.


Catalysts ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 539 ◽  
Author(s):  
Renfei Li ◽  
Wenbing Tan ◽  
Xinyu Zhao ◽  
Qiuling Dang ◽  
Qidao Song ◽  
...  

Wood waste generated during the tree felling and processing is a rich, green, and renewable lignocellulosic biomass. However, an effective method to apply wood waste in anaerobic digestion is lacking. The high carbon to nitrogen (C/N) ratio and rich lignin content of wood waste are the major limiting factors for high biogas production. NaOH pre-treatment for lignocellulosic biomass is a promising approach to weaken the adverse effect of complex crystalline cellulosic structure on biogas production in anaerobic digestion, and the synergistic integration of lignocellulosic biomass with low C/N ratio biomass in anaerobic digestion is a logical option to balance the excessive C/N ratio. Here, we assessed the improvement of methane production of wood waste in anaerobic digestion by NaOH pretreatment, co-digestion technique, and their combination. The results showed that the methane yield of the single digestion of wood waste was increased by 38.5% after NaOH pretreatment compared with the untreated wood waste. The methane production of the co-digestion of wood waste and pig manure was higher than that of the single digestion of wood waste and had nonsignificant difference with the single-digestion of pig manure. The methane yield of the co-digestion of wood waste pretreated with NaOH and pig manure was increased by 75.8% than that of the untreated wood waste. The findings indicated that wood waste as a sustainable biomass source has considerable potential to achieve high biogas production in anaerobic digestion.


2015 ◽  
Vol 46 (1) ◽  
pp. 30 ◽  
Author(s):  
Damiano Coppolecchia ◽  
Davide Gardoni ◽  
Cecilia Baldini ◽  
Federica Borgonovo ◽  
Marcella Guarino

Handling systems can influence the production of biogas and methane from dairy farm manures. A comparative work performed in three different Italian dairy farms showed how the most common techniques (scraper, slatted floor, flushing) can change the characteristics of collected manure. Scraper appears to be the most <em>neutral</em> choice, as it does not significantly affect the original characteristics of manure. Slatted floor produces a manure that has a lower methane potential in comparison with scraper, due to: a lower content of volatile solids caused by the biodegradation occurring in the deep pit, and a lower specific biogas production caused by the change in the characteristics of organic matter. Flushing can produce three different fluxes: diluted flushed manure, solid separated manure and liquid separated manure. The diluted fraction appears to be unsuitable for conventional anaerobic digestion in completely stirred reactors (CSTR), since its content of organic matter is too low to be worthwhile. The liquid separated fraction could represent an interesting material, as it appears to accumulate the most biodegradable organic fraction, but not as primary substrate in CSTR as the organic matter concentration is too low. Finally, the solid-liquid separation process tends to accumulate inert matter in the solid separated fraction and, therefore, its specific methane production is low.


Sign in / Sign up

Export Citation Format

Share Document