scholarly journals Improved green coffee oil antioxidant activity for cosmetical purpose by spray drying microencapsulation

2015 ◽  
Vol 25 (3) ◽  
pp. 307-311 ◽  
Author(s):  
Anna B.F.L. Nosari ◽  
Juliana F. Lima ◽  
Osvaldo A. Serra ◽  
Luis Alexandre P. Freitas
2014 ◽  
Vol 61 ◽  
pp. 236-245 ◽  
Author(s):  
A.G.S. Carvalho ◽  
V.M. Silva ◽  
M.D. Hubinger
Keyword(s):  

Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 734
Author(s):  
Miriam Granados-Vallejo ◽  
Hugo Espinosa-Andrews ◽  
Guadalupe M. Guatemala-Morales ◽  
Hugo Esquivel-Solis ◽  
Enrique Arriola-Guevara

In the search for oils of commercial interest that serve as new sources for the generation of cosmetic, pharmaceutical, or nutraceutical products, the green coffee beans oil (Coffea arabica L.) was studied. This research aimed to evaluate the oxidative stability of microencapsulated green coffee oil (Coffea arabica) by spray drying. The green coffee oil emulsions were produced by microfluidization using mesquite gum and octenyl succinic anhydride modified starches (OSA-starch) as wall-material. The particle size, polydispersity, and zeta potential on the microfluidized emulsions were optimized. The results showed that microfluidization had positive effects on the reduction of the emulsion droplets and the zeta potential, developing stable emulsions for both polymers. Then, the optimal microfluidization conditions were used to evaluate the impact of the spray drying conditions on the microencapsulation efficiency, morphology, and oxidation stability of the green coffee oil microcapsules under accelerated storage conditions (32% relative humidity (RH) at 25 °C). The microencapsulation efficiency was approximately 98% for both wall-materials. The morphology of the microcapsules showed spherical shapes and polydisperse sizes, a typical characteristic of spray-dried powders. The oxidative stability of the microcapsules was lower than the bulk green coffee oil (87.39 meq of O2/kg of oil), reaching values of 60.83 meq of O2/kg of oil for mesquite gum and 70.67 meq of O2/kg of oil for OSA-starch. The microcapsules produced have good potential for the development of nutraceutical foods or cosmetic formulations with adequate stability.


Author(s):  
R. I. Nogueira ◽  
F. C. A. Souza ◽  
E. F. Souza ◽  
S. M. Pontes ◽  
W. F. Leal Junior ◽  
...  

Green Coffee Products (GCP) consumption have been increased recently and is justified due its benefits to human health, as the antioxidant activity and thermogenic properties and ant mutagenic and ant carcinogenic capacity and also present alleged weight loss control. The aim this work was to elaborate a GCP with Coffea canephora by spray drying and compare its antioxidant capacity to commercial GCP samples by ORAC methodology. The results presented a range of 33.02 – 2,408.05 µmol Trolox/g for commercial products and 1,861.91 µmol Trolox/g for the product obtained in this work. Keywords: Antioxidant Activity;Green Coffee;Spray Drying;ORAC.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Luiz C. Corrêa-Filho ◽  
Maria M. Lourenço ◽  
Margarida Moldão-Martins ◽  
Vítor D. Alves

Carotenoids are a class of natural pigments found mainly in fruits and vegetables. Among them,β-carotene is regarded the most potent precursor of vitamin A. However, it is susceptible to oxidation upon exposure to oxygen, light, and heat, which can result in loss of colour, antioxidant activity, and vitamin activity. Thus, the objective of this work was to study the microencapsulation process ofβ-carotene by spray drying, using arabic gum as wall material, to protect it against adverse environmental conditions. This was carried out using the response surface methodology coupled to a central composite rotatable design, evaluating simultaneously the effect of drying air inlet temperature (110-200°C) and the wall material concentration (5-35%) on the drying yield, encapsulation efficiency, loading capacity, and antioxidant activity. In addition, morphology and particles size distribution were evaluated. Scanning electron microscopy images have shown that the particles were microcapsules with a smooth surface when produced at the higher drying temperatures tested, most of them having a diameter lower than 10μm. The conditions that enabled obtaining simultaneously arabic gum microparticles with higherβ-carotene content, higher encapsulation efficiency, and higher drying yield were a wall material concentration of 11.9% and a drying inlet temperature of 173°C. The systematic approach used for the study ofβ-carotene microencapsulation process by spray drying using arabic gum may be easily applied for other core and wall materials.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1255
Author(s):  
Sofia C. Lourenço ◽  
Débora A. Campos ◽  
Ricardo Gómez-García ◽  
Manuela Pintado ◽  
M. Conceição Oliveira ◽  
...  

Pineapple peel still contains an important amount of phenolic compounds and vitamins with valuable antioxidant activity. In this way, the aim of this study was the recovery of the bioactive compounds from pineapple peel using environmentally friendly and low-cost techniques, envisaging their application in food products. From the solid-liquid extraction conditions tested, the one delivering an extract with higher total phenolic content and antioxidant capacity was a single extraction step with a solvent-pineapple peel ratio of 1:1 (w/w) for 25 min at ambient temperature, using ethanol-water (80–20%) as a solvent. The resulting extract revealed a total phenolic content value of 11.10 ± 0.01 mg gallic acid equivalent (GAE)/g dry extract, antioxidant activity of 91.79 ± 1.98 µmol Trolox/g dry extract by the DPPH method, and 174.50 ± 9.98 µmol Trolox/g dry extract by the FRAP method. The antioxidant rich extract was subjected to stabilization by the spray drying process at 150 °C of inlet air temperature using maltodextrin (5% w/w) as an encapsulating agent. The results showed that the antioxidant capacity of the encapsulated compounds was maintained after encapsulation. The loaded microparticles obtained, which consist of a bioactive powder, present a great potential to be incorporated in food products or to produce bioactive packaging systems.


2021 ◽  
Vol 02 ◽  
Author(s):  
Thanh V. Ngo ◽  
Christopher J. Scarlett ◽  
Michael C. Bowyer ◽  
Rebecca McCullum ◽  
Quan V. Vuong

Background: S. chinensis extract contains bioactive compounds, which exhibit high antioxidant activities. However, for commercial uses, it is necessary to encapsulate the extract to protect it from degradation. Objective: This study aimed to optimise spray-drying conditions and then compare with freeze-drying to identify the most suitable conditions for encapsulation of Salacia chinensis L. root extract. Method: Three factors of spray-drying encapsulation, including maltodextrin concentration, inlet temperature and feed rate, have been tested for the impacts on the physical and phytochemical properties of S. chinensis root extract. Based on the optimal conditions, the spray-drying was then compared with freeze-drying. Results: The results showed that maltodextrin concentration, inlet temperature and feed rate had significant impacts on recovery yield, phenolics, mangiferin and antioxidant activity of the spray-dried extract. The optimal spray-drying encapsulation conditions were maltodextrin concentration of 20 %, inlet temperature of 130ºC and feed rate of 9 mL/min. Under these optimal conditions, the encapsulated extract had comparable solubility, total phenolics, mangiferin, and antioxidant activity, lower bulk density, moisture content, and water activity as compared to encapsulated extract made using the freeze-drying technique. These optimal spray-drying conditions are recommended to encapsulate the extract of S. chinensis root. Conclusion: Spray-drying was found to be more effective for encapsulation of S. chinensis root extract than freeze-drying. Therefore, spray-drying is recommended for further applications.


Sign in / Sign up

Export Citation Format

Share Document