scholarly journals Hydraulic Permeability and Compressive Properties of Porcine and Human Synovium

Author(s):  
Milad Rohanifar ◽  
Benjamin B. Johnston ◽  
Alexandra L. Davis ◽  
Young Guang ◽  
Kayla Nommensen ◽  
...  
2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Brianne K. Connizzo ◽  
Alan J. Grodzinsky

Rotator cuff disorders are one of the most common causes of shoulder pain and disability in the aging population but, unfortunately, the etiology is still unknown. One factor thought to contribute to the progression of disease is the external compression of the rotator cuff tendons, which can be significantly increased by age-related changes such as muscle weakness and poor posture. The objective of this study was to investigate the baseline compressive response of tendon and determine how this response is altered during maturation and aging. We did this by characterizing the compressive mechanical, viscoelastic, and poroelastic properties of young, mature, and aged mouse supraspinatus tendons using macroscale indentation testing and nanoscale high-frequency AFM-based rheology testing. Using these multiscale techniques, we found that aged tendons were stiffer than their mature counterparts and that both young and aged tendons exhibited increased hydraulic permeability and energy dissipation. We hypothesize that regional and age-related variations in collagen morphology and organization are likely responsible for changes in the multiscale compressive response as these structural parameters may affect fluid flow. Importantly, these results suggest a role for age-related changes in the progression of tendon degeneration, and we hypothesize that decreased ability to resist compressive loading via fluid pressurization may result in damage to the extracellular matrix (ECM) and ultimately tendon degeneration. These studies provide insight into the regional multiscale compressive response of tendons and indicate that altered compressive properties in aging tendons may be a major contributor to overall tendon degeneration.


Author(s):  
Andy Morejon ◽  
Christopher D. Norberg ◽  
Massimiliano De Rosa ◽  
Thomas M. Best ◽  
Alicia R. Jackson ◽  
...  

The meniscus is crucial in maintaining knee function and protecting the joint from secondary pathologies, including osteoarthritis. The meniscus has been shown to absorb up to 75% of the total load on the knee joint. Mechanical behavior of meniscal tissue in compression can be predicted by quantifying the mechanical parameters including; aggregate modulus (H) and Poisson modulus (ν), and the fluid transport parameter: hydraulic permeability (K). These parameters are crucial to develop a computational model of the tissue and for the design and development of tissue engineered scaffolds mimicking the native tissue. Hence, the objective of this study was to characterize the mechanical and fluid transport properties of human meniscus and relate them to the tissue composition. Specimens were prepared from the axial and the circumferential anatomical planes of the tissue. Stress relaxation tests yielded the H, while finite element modeling was used to curve fit for ν and K. Correlations of moduli with water and glycosaminoglycans (GAGs) content were investigated. On average H was found to be 0.11 ± 0.078 MPa, ν was 0.32 ± 0.057, and K was 2.9 ± 2.27 × 10−15 m4N−1s−1. The parameters H, ν, and K were not found to be statistically different across compression orientation or compression level. Water content of the tissue was 77 ± 3.3% while GAG content was 8.79 ± 1.1%. Interestingly, a weak negative correlation was found between H and water content (R2 ~ 34%) and a positive correlation between K and GAG content (R2 ~ 53%). In conclusion, while no significant differences in transport and compressive properties can be found across sample orientation and compression levels, data trends suggest potential relationships between magnitudes of H and K, and GAG content.


2019 ◽  
Vol 26 (4) ◽  
pp. 197-208
Author(s):  
Leo Gu Li ◽  
Albert Kwok Hung Kwan

Previous research studies have indicated that using fibres to improve crack resistance and applying expansive agent (EA) to compensate shrinkage are both effective methods to mitigate shrinkage cracking of concrete, and the additions of both fibres and EA can enhance the other performance attributes of concrete. In this study, an EA was added to fibre reinforced concrete (FRC) to produce concrete mixes with various water/binder (W/B) ratios, steel fibre (SF) contents and EA contents for testing of their workability and compressive properties. The test results showed that adding EA would slightly increase the superplasticiser (SP) demand and decrease the compressive strength, Young’s modulus and Poisson’s ratio, but significantly improve the toughness and specific toughness of the steel FRC produced. Such improvement in toughness may be attributed to the pre-stress of the concrete matrix and the confinement effect of the SFs due to the expansion of the concrete and the restraint of the SFs against such expansion.


2020 ◽  
Vol 35 (23-24) ◽  
pp. 3157-3169
Author(s):  
Qingyuan Xu ◽  
Shuguang Li ◽  
Runsheng Hu ◽  
Mengmeng Liu ◽  
Dong Wang ◽  
...  

Abstract


2019 ◽  
Author(s):  
Chem Int

The objective of this work is to study the ageing state of a used reverse osmosis (RO) membrane taken in Algeria from the Benisaf Water Company seawater desalination unit. The study consists of an autopsy procedure used to perform a chain of analyses on a membrane sheet. Wear of the membrane is characterized by a degradation of its performance due to a significant increase in hydraulic permeability (25%) and pressure drop as well as a decrease in salt retention (10% to 30%). In most cases the effects of ageing are little or poorly known at the local level and global measurements such as (flux, transmembrane pressure, permeate flow, retention rate, etc.) do not allow characterization. Therefore, a used RO (reverse osmosis) membrane was selected at the site to perform the membrane autopsy tests. These tests make it possible to analyze and identify the cause as well as to understand the links between performance degradation observed at the macroscopic scale and at the scale at which ageing takes place. External and internal visual observations allow seeing the state of degradation. Microscopic analysis of the used membranes surface shows the importance of fouling. In addition, quantification and identification analyses determine a high fouling rate in the used membrane whose foulants is of inorganic and organic nature. Moreover, the analyses proved the presence of a biofilm composed of protein.


Author(s):  
Farid Triawan ◽  
Geraldy Cahya Denatra ◽  
Djati Wibowo Djamari

The study of a thin-walled column structure has gained much attention due to its potential in many engineering applications, such as the crash box of a car. A thin-walled square column usually exhibits high initial peak force, which may become very dangerous to the driver or passenger. To address this issue, introducing some shape patterns, e.g., origami folding pattern, to the column may become a solution. The present work investigates the compressive properties and behavior of a square box column structure which adopts the Miura origami folding pattern. Several test pieces of single-cell Miura origami column with varying folding angle and layer height are fabricated by a 3D printer. The filament is made of Polylactic Acid (PLA), which is a brittle material. Then, compression tests are carried out to understand its compressive mechanical properties and behavior. The results show that introducing a Miura origami pattern to form a thin-walled square column can dramatically lower down the initial peak stress by 96.82% and, at the same time, increase its ductility, which eventually improves the energy absorption capacity by 61.68% despite the brittle fracture behavior.


2004 ◽  
Vol 4 (5-6) ◽  
pp. 199-206
Author(s):  
M. Ribau Teixeira ◽  
H. Lucas ◽  
M.J. Rosa

A rapid small-scale evaluation of ultrafiltration (UF) performance with and without physical–chemical pre-treatment was performed to up-grade the conventional treatment used for drinking water production in Alcantarilha's water treatment works, Algarve, Portugal. Direct UF and pre-ozonation/coagulation/flocculation/sedimentation/UF (O/C/F/S/UF) were evaluated using polysulphone membranes of different apparent molecular weight cut-off (MWCO) (15–47 kDa). The results indicated that (i) UF is an effective barrier against microorganisms, including virus larger than 80 nm; (ii) for surface waters with low to moderate SUVA values, direct UF performance is equivalent or better than the conventional treatment in terms of residual turbidity, while UV254 nm and TOC residuals require the use of O/C/F/S/UF; (iii) the permeate quality improves with the membrane apparent MWCO decrease, especially for the direct UF, although the conventional treatment performance is never reached using UF; (iv) membrane fouling and adsorption phenomena are more severe in direct UF than in O/C/F/S/UF sequence (pre-ozonation decreases the membrane foulants by decreasing their hydrophobicity) and these phenomena increase with the membrane hydraulic permeability and, particularly, with the membrane apparent MWCO.


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 509
Author(s):  
Lisa Wiedenhöft ◽  
Mohamed M. A. Elleithy ◽  
Mathias Ulbricht ◽  
Felix H. Schacher

Porous adsorber membranes are promising materials for the removal of charged pollutants, such as heavy metal ions or organic dyes as model substances for pharmaceuticals from water. Here, we present the surface grafting of polyethylene terephthalate (PET) track-etched membranes having well defined cylindrical pores of 0.2 or 1 µm diameter with two polyelectrolytes, poly(2-acrylamido glycolic acid) (PAGA) and poly(N-acetyl dehydroalanine) (PNADha). The polyelectrolyte functionalised membranes were characterised by changes in wettability and hydraulic permeability in response to the external stimuli pH and the presence of Cu2+ ions. The response of the membranes proved to be consistent with functionalisation inside the pores, and the change of grafted polyelectrolyte macro-conformation was due to the reversible protonation or binding of Cu2+ ions. Moreover, the adsorption of the model dye methylene blue was studied and quantified. PAGA-grafted membranes showed an adsorption behavior following the Langmuir model for methylene blue.


Sign in / Sign up

Export Citation Format

Share Document